
Version 1.0 - 1 July 1994

The OpenGLTM Graphics System�

A Speci�cation
�Version ����

Mark Segal
Kurt Akeley

Editor�

Chris Frazier

Version 1.0 - 1 July 1994

Copyright c� 1992, 1993, 1994 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright� and contains information propri�
etary to Silicon Graphics� Inc� Any copying� adaptation� distribution� public
performance� or public display of this document without the express written
consent of Silicon Graphics� Inc� is strictly prohibited� The receipt or pos�
session of this document does not convey any rights to reproduce� disclose�
or distribute its contents� or to manufacture� use� or sell anything that it
may describe� in whole or in part�

U.S. Government Restricted Rights Legend

Use� duplication� or disclosure by the Government is subject to restrictions
set forth in FAR ����������c	��	 or subparagraph �c	��	�ii	 of the Rights
in Technical Data and Computer Software clause at DFARS ���������
��
and�or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement� Unpublished rights reserved under the copyright laws of the
United States� Contractor�manufacturer is Silicon Graphics� Inc�� �
�� N�
Shoreline Blvd�� Mountain View� CA �

��������

OpenGL is a trademark of Silicon Graphics, Inc.

Version 1.0 - 1 July 1994

Contents

� Introduction �

��� What is the OpenGL Graphics System� � � � � � � � � � � � � �
��� Programmer�s View of OpenGL � � � � � � � � � � � � � � � � � �

��� Implementor�s View of OpenGL � � � � � � � � � � � � � � � � � �
��
 Our View �

� OpenGL Operation �

��� OpenGL Fundamentals �

��� GL State �

��� GL Command Syntax �
��
 Basic GL Operation �

��� GL Errors ��
��� Begin�End Paradigm ��

����� Begin and End Objects � � � � � � � � � � � � � � � � � ��
����� Polygon Edges ��

����� GL Commands within Begin�End � � � � � � � � � � � �

��� Vertex Speci�cation �

��� Rectangles ��

��� Coordinate Transformations ��
����� Controlling the Viewport � � � � � � � � � � � � � � � � �

����� Matrices ��
����� Normal Transformation � � � � � � � � � � � � � � � � � ��

����
 Generating texture coordinates � � � � � � � � � � � � � �

���
 Clipping ��

���� Current Raster Position �

���� Colors and Coloring ��

������ Lighting ��
������ Lighting Parameter Speci�cation � � � � � � � � � � � �
�

i

Version 1.0 - 1 July 1994

ii CONTENTS

������ ColorMaterial �
�

�����
 Lighting State �
�

������ Color Index Lighting � � � � � � � � � � � � � � � � � � �
�

������ Clamping or Masking � � � � � � � � � � � � � � � � � �
�

������ Flatshading �
�

������ Color and Texture Coordinate Clipping � � � � � � � �
�

������ Final Color Processing � � � � � � � � � � � � � � � � � �
�

� Rasterization ��

��� Invariance ��

��� Antialiasing ��

��� Points ��

����� Point Rasterization State � � � � � � � � � � � � � � � � ��

��
 Line Segments ��

��
�� Basic Line Segment Rasterization � � � � � � � � � � � � ��

��
�� Other Line Segment Features � � � � � � � � � � � � � � ��

��
�� Line Rasterization State � � � � � � � � � � � � � � � � � ��

��� Polygons ��

����� Basic Polygon Rasterization � � � � � � � � � � � � � � � ��

����� Stippling ��

����� Antialiasing ��

����
 Options Controlling Polygon Rasterization � � � � � � ��

����� Polygon Rasterization State � � � � � � � � � � � � � � � ��

��� Pixel Rectangles ��

����� Pixel Storage Modes ��

����� Pixel Transfer Modes � � � � � � � � � � � � � � � � � � ��

����� Rasterization of Pixel Rectangles � � � � � � � � � � � � �

��� Bitmaps ��

��� Texturing ��

����� Texture Mini�cation ��

����� Texture Magni�cation � � � � � � � � � � � � � � � � � � ��

����� Texture Environments and Texture Functions � � � � � ��

����
 Texture Application ��

��� Fog �

���
 Antialiasing Application ��

Version 1.0 - 1 July 1994

CONTENTS iii

� Fragments and the Framebu�er ��

�� Per�Fragment Operations �

���� Pixel Ownership Test � � � � � � � � � � � � � � � � � � �

���� Scissor test ��

���� Alpha test ��

���
 Stencil test ��

���� Depth bu�er test ��

���� Blending ��

���� Dithering �

���� Logical Operation �

�� Whole Framebu�er Operations � � � � � � � � � � � � � � � � � �
�

���� Selecting a Bu�er for Writing � � � � � � � � � � � � � � �
�

���� Fine Control of Bu�er Updates � � � � � � � � � � � � � �
�

���� Clearing the Bu�ers �

���
 The Accumulation Bu�er � � � � � � � � � � � � � � � � �
�

�� Drawing� Reading� and Copying Pixels � � � � � � � � � � � � � �
�

���� Writing to the Stencil Bu�er � � � � � � � � � � � � � � �
�

���� Reading Pixels �
�

���� Copying Pixels ���

���
 Pixel draw�read state � � � � � � � � � � � � � � � � � � ���

� Special Functions ���

��� Evaluators ��

��� Selection ��

��� Feedback ���

��
 Display Lists ���

��� Flush and Finish ���

��� Hints ���

� State and State Requests ���

A Invariance ���

A�� Repeatability ��

A�� Multi�pass Algorithms ���

A�� Invariance Rules ���

A�
 What All This Means ���

B Corollaries ��	

Version 1.0 - 1 July 1994

iv CONTENTS

Index of OpenGL Commands ���

Version 1.0 - 1 July 1994

List of Figures

��� Block diagram of the GL� �
��� Creation of a processed vertex from a transformed vertex and

current values� ��
��� Primitive assembly and processing� � � � � � � � � � � � � � � � ��
��
 Triangle strips� fans� and independent triangles� � � � � � � � � ��
��� Quadrilateral strips and independent quadrilaterals� � � � � � ��
��� Vertex transformation sequence� � � � � � � � � � � � � � � � � ��
��� Current raster position� ��
��� Processing of colors� ��
��� ColorMaterial operation�
�

��� Rasterization� �

��� Rasterization of non�antialiased wide points� � � � � � � � � � � ��
��� Rasterization of antialiased wide points� � � � � � � � � � � � � ��
��
 Visualization of Bresenham�s algorithm� � � � � � � � � � � � � ��
��� Rasterization of non�antialiased wide lines� � � � � � � � � � � �

��� The region used in rasterizing an antialiased line segment� � � ��
��� Operation of DrawPixels� �

��� Selecting a subimage from an image � � � � � � � � � � � � � � �

��� A bitmap and its associated parameters� � � � � � � � � � � � � ��
���
 A texture image and the coordinates used to access it� � � � � ��

�� Per�fragment operations� �

�� Operation of ReadPixels� �
�

�� Operation of CopyPixels� ���

��� Map Evaluation� ���
��� Feedback syntax� ���

v

Version 1.0 - 1 July 1994

List of Tables

��� GL command su�xes �

��� GL data types �

��� Summary of GL errors ��

��
 RGBA color component conversions � � � � � � � � � � � � � � ��

��� Summary of lighting parameters� � � � � � � � � � � � � � � � �

��� Correspondence of lighting parameter symbols to names� � � �

��� Polygon �atshading color selection� � � � � � � � � � � � � � � �
�

��� PixelStore parameters pertaining to DrawPixels� � � � � � ��

��� PixelTransfer parameters� ��

��� PixelMap parameters� �

��
 DrawPixels and ReadPixels types� � � � � � � � � � � � � � ��

��� DrawPixels and ReadPixels formats� � � � � � � � � � � � � ��

��� Correspondence of texture components to extracted R� G� B�
and A values� �

��� Texture parameters and their values� � � � � � � � � � � � � � � ��

��� Texture functions� ��

�� Values controlling the source blending function and the source
blending values they compute � � � � � � � � � � � � � � � � � � ��

�� Values controlling the destination blending function and the
destination blending values they compute � � � � � � � � � � � ��

�� Arguments to LogicOp and their corresponding operations� � �
�

�
 Arguments to DrawBu�er and the bu�ers that they indicate��
�

�� PixelStore parameters pertaining to ReadPixels� � � � � � � �
�

�� ReadPixels index masks and component conversion formulas����

��� Values speci�ed by the target to Map�� � � � � � � � � � � � � ���

��� Correspondence of feedback type to number of values per vertex���

vi

Version 1.0 - 1 July 1994

LIST OF TABLES vii

��� Attribute groups ��

��� State variable types ���
��� GL Internal begin�end state variables �inaccessible	 � � � � � � ���
��
 Current Values and Associated Data � � � � � � � � � � � � � � ���
��� Transformation state ���
��� Coloring �

��� Lighting �see also Table ��� for defaults	 � � � � � � � � � � � � �
�
��� Rasterization �
�
��� Texturing �
�
���
 Pixel Operations �

���� Framebu�er Control �
�
���� Pixels �
�
���� Pixels �cont�	 �
�
���
 Evaluators �GetMap takes a map name	 � � � � � � � � � � � �
�
���� Hints �
�
���� Implementation Dependent Values � � � � � � � � � � � � � � � ��

���� More Implementation Dependent Values � � � � � � � � � � � � ���
���� Implementation Dependent Pixel Depths � � � � � � � � � � � � ���
���� Miscellaneous ���

Version 1.0 - 1 July 1994

Chapter �

Introduction

This document describes the OpenGL graphics system� what it is� how it
acts� and what is required to implement it� We assume that the reader has
at least a rudimentary understanding of computer graphics� This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms�

��� What is the OpenGL Graphics System�

OpenGL �for �Open Graphics Library�	 is a software interface to graphics
hardware� The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high�quality graphical images� speci�cally color images
of three�dimensional objects�

Most of OpenGL requires that the graphics hardware contain a frame�
bu�er� Many OpenGL calls pertain to drawing objects such as points� lines�
polygons� and bitmaps� but the way that some of this drawing occurs �such
as when antialiasing or texturing is enabled	 relies on the existence of a
framebu�er� Further� some of OpenGL is speci�cally concerned with frame�
bu�er manipulation�

��� Programmer�s View of OpenGL

To the programmer� OpenGL is a set of commands that allow the speci��
cation of geometric objects in two or three dimensions� together with com�
mands that control how these objects are rendered into the framebu�er�

�

Version 1.0 - 1 July 1994

� CHAPTER �� INTRODUCTION

For the most part� OpenGL provides an immediate�mode interface� mean�
ing that specifying an object causes it to be drawn�

A typical program that uses OpenGL begins with calls to open a window
into the framebu�er into which the program will draw� Then� calls are made
to allocate a GL context and associate it with the window� Once a GL con�
text is allocated� the programmer is free to issue OpenGL commands� Some
calls are used to draw simple geometric objects �i�e� points� line segments�
and polygons	� while others a�ect the rendering of these primitives includ�
ing how they are lit or colored and how they are mapped from the user�s
two� or three�dimensional model space to the two�dimensional screen� There
are also calls to e�ect direct control of the framebu�er� such as reading and
writing pixels�

��� Implementor�s View of OpenGL

To the implementor� OpenGL is a set of commands that a�ect the opera�
tion of graphics hardware� If the hardware consists only of an addressable
framebu�er� then OpenGL must be implemented almost entirely on the host
CPU� More typically� the graphics hardware may comprise varying degrees
of graphics acceleration� from a raster subsystem capable of rendering two�
dimensional lines and polygons to sophisticated �oating�point processors
capable of transforming and computing on geometric data� The OpenGL
implementor�s task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware� This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls�

OpenGL maintains a considerable amount of state information� This
state controls how objects are drawn into the framebu�er� Some of this
state is directly available to the user� he or she can make calls to obtain its
value� Some of it� however� is visible only by the e�ect it has on what is
drawn� One of the main goals of this speci�cation is to make OpenGL state
information explicit� to elucidate how it changes� and to indicate what its
e�ects are�

��� Our View

We view OpenGL as a state machine that controls a set of speci�c draw�
ing operations� This model should engender a speci�cation that satis�es

Version 1.0 - 1 July 1994

���� OUR VIEW �

the needs of both programmers and implementors� It does not� however�
necessarily provide a model for implementation� An implementation must
produce results conforming to those produced by the speci�ed methods� but
there may be ways to carry out a particular computation that are more
e�cient than the one speci�ed�

Version 1.0 - 1 July 1994

Chapter �

OpenGL Operation

��� OpenGL Fundamentals

OpenGL �henceforth� the �GL�	 is concerned only with rendering into a
framebu�er �and reading values stored in that framebu�er	� There is no
support for other peripherals sometimes associated with graphics hardware�
such as mice and keyboards� Programmers must rely on other mechanisms
to obtain user input�

The GL draws primitives subject to a number of selectable modes� Each
primitive is a point� line segment� polygon� or pixel rectangle� Each mode
may be changed independently� the setting of one does not a�ect the settings
of others �although many modes may interact to determine what eventually
ends up in the framebu�er	� Modes are set� primitives speci�ed� and other
GL operations described by sending commands in the form of function or
procedure calls�

Primitives are de�ned by a group of one or more vertices� A vertex
de�nes a point� an endpoint of an edge� or a corner of a polygon where
two edges meet� Data �consisting of positional coordinates� colors� normals�
and texture coordinates	 are associated with a vertex and each vertex is
processed independently� in order� and in the same way� The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive �ts within a speci�ed region� in this case vertex data may be
modi�ed and new vertices created� The type of clipping depends on which
primitive the group of vertices represents�

Commands are always processed in the order in which they are received�
although there may be an indeterminate delay before the e�ects of a com�

Version 1.0 - 1 July 1994

���� OPENGL FUNDAMENTALS �

mand are realized� This means� for example� that one primitive must be
drawn completely before any subsequent one can a�ect the framebu�er� It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands� In gen�
eral� the e�ects of a GL command on either GL modes or the framebu�er
must be complete before any subsequent command can have any such e�ects�

In the GL� data binding occurs on call� This means that data passed
to a command are interpreted when that command is received� Even if the
command requires a pointer to data� those data are interpreted when the
call is made� and any subsequent changes to the data have no e�ect on the
GL �unless the same pointer is used in a subsequent command	�

The GL provides direct control over the fundamental operations of �D
and �D graphics� This includes speci�cation of such parameters as trans�
formation matrices� lighting equation coe�cients� antialiasing methods� and
pixel update operators� It does not provide a means for describing or mod�
eling complex geometric objects� Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves�

The model for interpretation of GL commands is client�server� That is� a
program �the client	 issues commands� and these commands are interpreted
and processed by the GL �the server	� The server may or may not operate
on the same computer as the client� In this sense� the GL is �network�
transparent�� A server may maintain a number of GL contexts� each of
which is an encapsulation of current GL state� A client may choose to
connect to any one of these contexts�

The e�ects of GL commands on the framebu�er are ultimately controlled
by the window system that allocates framebu�er resources� It is the window
system that determines which portions of the framebu�er the GL may access
at any given time and that communicates to the GL how those portions
are structured� Therefore� there are no GL commands to con�gure the
framebu�er or initialize the GL� Similarly� display of framebu�er contents
on a CRT monitor �including the transformation of individual framebu�er
values by such techniques as gamma correction	 is not addressed by the GL�
Framebu�er con�guration occurs outside of the GL in conjunction with the
window system� the initialization of a GL context occurs when the window
system allocates a window for GL rendering�

The GL is designed to be run on a range of graphics platforms with vary�
ing graphics capabilities and performance� To accommodate this variety� we

Version 1.0 - 1 July 1994

� CHAPTER �� OPENGL OPERATION

specify ideal behavior instead of actual behavior for certain GL operations�
In cases where deviation from the ideal is allowed� we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully� This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebu�er con�gurations�

Finally� command names� constants� and types are pre�xed in the GL
�by gl� GL � and GL� respectively in C	 to reduce name clashes with other
packages� The pre�xes are omitted in this document for clarity�

Floating
Point Computation

The GL must perform a number of �oating�point operations during the
course of its operation� We do not specify how �oating�point numbers are
to be represented or how operations on them are to be performed� We require
simply that numbers� �oating�point parts contain enough bits and that their
exponent �elds are large enough so that individual results of �oating�point
operations are accurate to about � part in �
�� The maximum representable
magnitude of a �oating�point number used to represent positional or normal
coordinates must be at least ���� the maximum representable magnitude for
colors or texture coordinates must be at least ���� The maximum repre�
sentable magnitude for all other �oating�point values must be at least ����
x �
 �
 � x �
 for any non�in�nite and non�NaN x� � � x � x � � � x�
x�
 �
�x � x�
� � �� �Occasionally further requirements will be speci�
�ed�	 Most single�precision �oating�point formats meet these requirements�

Any representable �oating�point value is legal as input to a GL command
that requires �oating�point data� The result of providing a value that is not
a �oating�point number to such a command is unspeci�ed� but must not
lead to GL interruption or termination� In IEEE arithmetic� for example�
providing a negative zero or a denormalized number to a GL command yields
predictable results� while providing a NaN or an in�nity yields unspeci�ed
results�

Some calculations require division� In such cases �including implied di�
visions required by vector normalizations	� a division by zero produces an
unspeci�ed result but must not lead to GL interruption or termination�

Version 1.0 - 1 July 1994

���� GL STATE �

��� GL State

The GL maintains considerable state� This document enumerates each state
variable and describes how each variable can be changed� For purposes
of discussion� state variables are categorized somewhat arbitrarily by their
function� Although we describe the operations that the GL performs on the
framebu�er� the framebu�er is not a part of GL state�

We distinguish two types of state� The �rst type of state� called GL
server state� resides in the GL server� The majority of GL state falls into
this category� The second type of state� called GL client state� resides in the
GL client� Unless otherwise speci�ed� all state referred to in this document
is GL server state� GL client state is speci�cally identi�ed� Each instance of
a GL context implies one complete set of GL server state� each connection
from a client to a server implies a set of both GL client state and GL server
state�

While an implementation of the GL may be hardware dependent� this
discussion is independent of the speci�c hardware on which a GL is imple�
mented� We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state�

��� GL Command Syntax

GL commands are functions or procedures� Various groups of commands
perform the same operation but di�er in how arguments are supplied to
them� To conveniently accommodate this variation� we adopt a notation for
describing commands and their arguments�

GL commands are formed from a name followed� depending on the par�
ticular command� by up to
 characters� The �rst character indicates the
number of values of the indicated type that must be presented to the com�
mand� The second character or character pair indicates the speci�c type of
the arguments� ��bit integer� ���bit integer� ���bit integer� single�precision
�oating�point� or double�precision �oating�point� The �nal character� if
present� is v� indicating that the command takes a pointer to an array �a
vector	 of values rather than a series of individual arguments� Two speci�c
examples come from the Vertex command�

void Vertex�f� float x� float y� float z 	 �

and

Version 1.0 - 1 July 1994

� CHAPTER �� OPENGL OPERATION

Letter Corresponding GL Type

b byte

s short

i int

f float

d double

ub ubyte

us ushort

ui uint

Table ���� Correspondence of command su�x letters to GL argument types�
Refer to Table ��� for de�nitions of the GL types�

void Vertex�sv� short v��� 	 �

These examples show the ANSI C declarations for these commands� In
general� a command declaration has the form�

rtype Namef�����gf� b s i f d ub us uigf�vg
� �args �� T arg� � � � � � T argN �� args� ��

rtype is the return type of the function� The braces �fg	 enclose a series
of characters �or character pairs	 of which one is selected� � indicates no
character� The arguments enclosed in brackets ��args �� and �� args�	 may
or may not be present� The N arguments arg� through argN have type T�
which corresponds to one of the type letters or letter pairs as indicated in
Table ��� �if there are no letters� then the arguments� type is given explic�
itly	� If the �nal character is not v� then N is given by the digit �� �� �� or
� �if there is no digit� then the number of arguments is �xed	� If the �nal
character is v� then only arg� is present and it is an array of N values of
the indicated type� Finally� we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name �so that� for instance�
unsigned char is abbreviated uchar	�

For example�

�The declarations shown in this document apply to ANSI C� Languages such as C��

and Ada that allow passing of argument type information admit simpler declarations and

fewer entry points�

Version 1.0 - 1 July 1994

���� BASIC GL OPERATION �

void Normal�ffdg� T arg 	 �

indicates the two declarations

void Normal�f� float arg�� float arg�� float arg� 	 �
void Normal�d� double arg�� double arg�� double arg� 	 �

while

void Normal�ffdgv� T arg 	 �

means the two declarations

void Normal�fv� float arg��� 	 �
void Normal�dv� double arg��� 	 �

Arguments whose type is �xed �i�e� not indicated by a su�x on the
command	 are of one of �
 types �or pointers to one of these	� These types
are summarized in Table ����

��� Basic GL Operation

Figure ��� shows a schematic diagram of the GL� Commands enter the GL
on the left� Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages� Most
commands may be accumulated in a display list for processing by the GL at
a later time� Otherwise� commands are e�ectively sent through a processing
pipeline�

The �rst stage provides an e�cient means for approximating curve and
surface geometry by evaluating polynomial functions of input values� The
next stage operates on geometric primitives described by vertices� points�
line segments� and polygons� In this stage vertices are transformed and lit�
and primitives are clipped to a viewing volume in preparation for the next
stage� rasterization� The rasterizer produces a series of framebu�er addresses
and values using a two�dimensional description of a point� line segment� or
polygon� Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they �nally alter the framebu�er�
These operations include conditional updates into the framebu�er based
on incoming and previously stored depth values �to e�ect depth bu�ering	�
blending of incoming fragment colors with stored colors� as well as masking
and other logical operations on fragment values�

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

GL Type Minimum Precision Description

boolean � bit Boolean

byte � bits signed ��s complement binary
integer

ubyte � bits unsigned binary integer

short �� bits signed ��s complement binary
integer

ushort �� bits unsigned binary integer

int �� bits signed ��s complement binary
integer

uint �� bits unsigned binary integer

sizei �� bits Non�negative binary integer size

enum �� bits Enumerated binary integer value

bitfield �� bits Bit �eld

float �� bits Floating�point value

clampf �� bits Floating�point value clamped to
�
� ��

double �
 bits Floating�point value

clampd �
 bits Floating�point value clamped to
�
� ��

Table ���� GL data types� An implementation may use more bits than
the number indicated in the table to represent one of these types� Correct
interpretation of integer values outside the minimum range is not required�
however�

Version 1.0 - 1 July 1994

���� GL ERRORS ��

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure ���� Block diagram of the GL�

Finally� there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations� eventually causing a block of pixels to be written to the frame�
bu�er� values may also be read back from the framebu�er or copied from
one portion of the framebu�er to another� These transfers may include some
type of decoding or encoding�

This ordering is meant only as a tool for describing the GL� not as a strict
rule of how the GL is implemented� and we present it only as a means to
organize the various operations of the GL� Objects such as curved surfaces�
for instance� may be transformed before they are converted to polygons�

��� GL Errors

The GL detects only a subset of those conditions that could be considered
errors� This is because in many cases error checking would adversely impact
the performance of an error�free program�

The command

enum GetError� void 	 �

is used to obtain error information� Each detectable error is assigned a
numeric code� When an error is detected� a �ag is set and the code is

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

recorded� Further errors� if they occur� do not a�ect this recorded code�
When GetError is called� the code is returned and the �ag is cleared�
so that a further error will again record its code� If a call to GetError
returns NO ERROR� then there has been no detectable error since the last call
to GetError �or since the GL was initialized	�

To allow for distributed implementations� there may be several �ag�
code pairs� In this case� after a call to GetError returns a value other
than NO ERROR each subsequent call returns the non�zero code of a distinct
�ag�code pair �in unspeci�ed order	� until all non�NO ERROR codes have been
returned� When there are no more non�NO ERROR error codes� all �ags are
reset� This scheme requires some positive number of pairs of a �ag bit and
an integer� The initial state of all �ags is cleared and the initial value of all
codes is NO ERROR�

Table ��� summarizes GL errors� Currently� when an error �ag is set�
results of GL operation are unde�ned only if OUT OF MEMORY has occurred�
In other cases� the command generating the error is ignored so that it has
no e�ect on GL state or framebu�er contents� If the generating command
returns a value� it returns zero� If the generating command modi�es values
through a pointer argument� no change is made to these values� These error
semantics apply only to GL errors� not to system errors such as memory
access errors� This behavior is the current behavior� the action of the GL in
the presence of errors is subject to change�

Two error generation conditions are implicit in the description of every
GL command� First� if a command that requires an enumerated value is
passed an enumerant that is not one of those speci�ed as allowable for that
command� the error INVALID ENUM results� This is the case even if the ar�
gument is a pointer to an enumerated value if that value is not allowable
for the given command� Second� if a negative number is provided where an
argument of type sizei is speci�ed� the error INVALID VALUE results�

��� Begin	End Paradigm

In the GL� most geometric objects are drawn by enclosing a series of coordi�
nate sets that specify vertices and optionally normals� texture coordinates�
and colors between Begin�End pairs� There are ten geometric objects that
are drawn this way� points� line segments� line segment loops� separated
line segments� polygons� triangle strips� triangle fans� separated triangles�
quadrilateral strips� and separated quadrilaterals�

Version 1.0 - 1 July 1994

���� BEGIN�END PARADIGM ��

Error Description O�ending com�
mand ignored�

INVALID ENUM enum argument out of range Yes

INVALID VALUE Numeric argument out of
range

Yes

INVALID OPERATION Operation illegal in current
state

Yes

STACK OVERFLOW Command would cause a stack
over�ow

Yes

STACK UNDERFLOW Command would cause a stack
under�ow

Yes

OUT OF MEMORY Not enough memory left to ex�
ecute command

Unknown

Table ���� Summary of GL errors

Each vertex is speci�ed with two� three� or four coordinates� In addition�
a current normal� current texture coordinates� and current color may be used
in processing each vertex� Normals are used by the GL in lighting calcu�
lations� the current normal is a three�dimensional vector that may be set
by sending three coordinates that specify it� Texture coordinates determine
how a texture image is mapped onto a primitive�

A color is associated with each vertex as it is speci�ed� This associated
color is either the current color or a color produced by lighting depending on
whether or not lighting is enabled� Texture coordinates are similarly asso�
ciated with each vertex� Figure ��� summarizes the association of auxiliary
data with a transformed vertex to produce a processed vertex�

The current values are part of GL state� Vertices and normals are trans�
formed� colors may be a�ected or replaced by lighting� and texture coordi�
nates are transformed and possibly a�ected by a texture coordinate genera�
tion function� The processing indicated for each current value is applied for
each vertex that is sent to the GL�

The methods by which vertices� normals� texture coordinates� and colors
are sent to the GL� as well as how normals are transformed and how vertices
are mapped to the two�dimensional screen� are discussed later�

Before a color has been assigned to a vertex� the state required by a ver�

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

lighting

vertex / normal
transformation

Current
Normal

Current
Color

Current
Texture
Coords

texgen texture
matrix

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Color & Texture
Coordinates)

Vertex
Coordinates In

Figure ���� Association of current values with a vertex� The heavy lined
boxes represent GL state�

Version 1.0 - 1 July 1994

���� BEGIN�END PARADIGM ��

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure ���� Primitive assembly and processing�

tex is the vertex�s coordinates� the current normal� and the current texture
coordinates� Once color has been assigned� however� the current normal
is no longer needed� Because color assignment is done vertex�by�vertex� a
processed vertex comprises the vertex�s coordinates� its assigned color� and
its texture coordinates�

Figure ��� shows the sequence of operations that builds a primitive
�point� line segment� or polygon	 from a sequence of vertices� After a primi�
tive is formed� it is clipped to a viewing volume� This may alter the primitive
by altering vertex coordinates� texture coordinates� and color� In the case
of a polygon primitive� clipping may insert new vertices into the primitive�
The vertices de�ning a primitive to be rasterized have texture coordinates
and color associated with them�

����� Begin and End Objects

Begin and End require one state variable with eleven values� one value for
each of the ten possible Begin�End objects� and one other value indicating
that no Begin�End object is being processed� The two relevant commands
are

void Begin� enum mode 	 �
void End� void 	 �

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

There is no limit on the number of vertices that may be speci�ed between
a Begin and an End�

Points� A series of individual points may be speci�ed by calling Begin
with an argument value of POINTS� No special state need be kept between
Begin and End in this case� since each point is independent of previous
and following points�

Line Strips� A series of one or more connected line segments is speci�ed
by enclosing a series of two or more endpoints within a Begin�End pair
when Begin is called with LINE STRIP� In this case� the �rst vertex speci�es
the �rst segment�s start point while the second vertex speci�es the �rst
segment�s endpoint and the second segment�s start point� In general� the
ith vertex �for i � �	 speci�es the beginning of the ith segment and the end
of the i� �st� The last vertex speci�es the end of the last segment� If only
one vertex is speci�ed between the Begin�End pair� then no primitive is
generated�

The required state consists of the processed vertex produced from the
last vertex that was sent �so that a line segment can be generated from it
to the current vertex	� and a boolean �ag indicating if the current vertex is
the �rst vertex�

Line Loops� Line loops� speci�ed with the LINE LOOP argument value to
Begin� are the same as line strips except that a �nal segment is added from
the �nal speci�ed vertex to the �rst vertex� The additional state consists of
the processed �rst vertex�

Separate Lines� Individual line segments� each speci�ed by a pair of
vertices� are generated by surrounding vertex pairs with Begin and End

when the value of the argument to Begin is LINES� In this case� the �rst
two vertices between a Begin and End pair de�ne the �rst segment� with
subsequent pairs of vertices each de�ning one more segment� If the number
of speci�ed vertices is odd� then the last one is ignored� The state required
is the same as for lines but it is used di�erently� a vertex holding the �rst
vertex of the current segment� and a boolean �ag indicating whether the
current vertex is odd or even �a segment start or end	�

Polygons� A polygon is described by specifying its boundary as a series
of line segments� When Begin is called with POLYGON� the bounding line
segments are speci�ed in the same way as line loops� Depending on the
current state of the GL� a polygon may be rendered in one of several ways
such as outlining its border or �lling its interior� A polygon described with
fewer than three vertices does not generate a primitive�

Only convex polygons are guaranteed to be drawn correctly by the GL�

Version 1.0 - 1 July 1994

���� BEGIN�END PARADIGM ��

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure ���� �a� A triangle strip� �b� A triangle fan� �c� Independent triangles�
The numbers give the sequencing of the vertices between Begin and End�
Note that the in �a� and �b� triangle edge ordering is determined by the �rst
triangle� while in �c� the order of each triangle	s edges is independent of the
other triangles�

If a speci�ed polygon is nonconvex �in particular� if its bounding edges�
when projected onto the window� intersect anywhere other than at common
endpoints	� then the rendered polygon need only lie within the convex hull
of the vertices de�ning its boundary�

The state required to support polygons consists of at least two processed
vertices �more than two are never required� although an implementation may
use more	� this is because a convex polygon can be rasterized as its vertices
arrive� before all of them have been speci�ed� The order of the vertices is sig�
ni�cant in lighting and polygon rasterization �see sections ������ and �����	�

Triangle strips� A triangle strip is a series of triangles connected along
shared edges� A triangle strip is speci�ed by giving a series of de�ning ver�
tices between a Begin�End pair when Begin is called with TRIANGLE STRIP�
In this case� the �rst three vertices de�ne the �rst triangle �and their order is
signi�cant� just as for polygons	� Each subsequent vertex de�nes a new tri�
angle using that point along with two vertices from the previous triangle� A
Begin�End pair enclosing fewer than three vertices� when TRIANGLE STRIP

has been supplied to Begin� produces no primitive� See Figure ��
�

The state required to support triangle strips consists of a �ag indicating
if the �rst triangle has been completed� two stored processed vertices� �called
vertex A and vertex B	� and a one bit pointer indicating which stored vertex

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

will be replaced with the next vertex� After a Begin�TRIANGLE STRIP��
the pointer is initialized to point to vertex A� Each vertex sent between a
Begin�End pair toggles the pointer� Therefore� the �rst vertex is stored as
vertex A� the second stored as vertex B� the third stored as vertex A� and
so on� Any vertex after the second one sent forms a triangle from vertex A�
vertex B� and the current vertex �in that order	�

Triangle fans� A triangle fan is the same as a triangle strip with one
exception� each vertex after the �rst always replaces vertex B of the two
stored vertices� The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN�

Separate Triangles� Separate triangles are speci�ed by placing ver�
tices between Begin and End when the value of the argument to Begin
is TRIANGLES� In this case� The �i� �st� �i� �nd� and �i� �rd vertices �in
that order	 determine a triangle for each i �
� �� � � � � n� �� where there are
�n�k vertices between the Begin and End� k is either
� �� or �� if k is not
zero� the �nal k vertices are ignored� For each triangle� vertex A is vertex
�i and vertex B is vertex �i� �� Otherwise� separate triangles are the same
as a triangle strip�

The rules given for polygons also apply to each triangle generated from
a triangle strip� triangle fan or from separate triangles�

Quadrilateral �quad
 strips� Quad strips generate a series of edge�
sharing quadrilaterals from vertices appearing between Begin and End�
when Begin is called with QUAD STRIP� If the m vertices between the Begin
and End are v�� � � � � vm� where vj is the jth speci�ed vertex� then quad i has
vertices �in order	 v�i� v�i��� v�i��� and v�i�� with i �
� � � � � bm��c� The
state required is thus three processed vertices� to store the last two vertices
of the previous quad along with the third vertex �the �rst new vertex	 of
the current quad� a �ag to indicate when the �rst quad has been completed�
and a one�bit counter to count members of a vertex pair� See Figure ����

A quad strip with fewer than four vertices generates no primitive� If
the number of vertices speci�ed for a quadrilateral strip between Begin and
End is odd� the �nal vertex is ignored�

Separate Quadrilaterals Separate quads are just like quad strips ex�
cept that each group of four vertices� the
j��st� the
j��nd� the
j��rd�
and the
j �
th� generate a single quad� for j �
� �� � � � � n � �� The total
number of vertices between Begin and End is
n� k� where
 � k � �� if
k is not zero� the �nal k vertices are ignored� Separate quads are generated
by calling Begin with the argument value QUADS�

The rules given for polygons also apply to each quad generated in a quad

Version 1.0 - 1 July 1994

���� BEGIN�END PARADIGM ��

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure ��
� �a� A quad strip� �b� Independent quads� The numbers give the
sequencing of the vertices between Begin and End�

strip or from separate quads�

����� Polygon Edges

Each edge of each primitive generated from a polygon� triangle strip� triangle
fan� separate triangle set� quadrilateral strip� or separate quadrilateral set�
is �agged as either boundary or non�boundary� These classi�cations are used
during polygon rasterization� some modes a�ect the interpretation of poly�
gon boundary edges �see section ����
	� By default� all edges are boundary
edges� but the default �agging of polygons� separate triangles� or separate
quadrilaterals may be altered by calling

void EdgeFlag� boolean �ag 	 �
void EdgeFlagv� boolean ��ag 	 �

to change the value of a �ag bit� If �ag is zero� then the �ag bit is set to
FALSE� if �ag is non�zero� then the �ag bit is set to TRUE�

When Begin is supplied with one of the argument values POLYGON�
TRIANGLES� or QUADS� each vertex speci�ed within a Begin and End pair
begins an edge� If the edge �ag bit is TRUE� then each speci�ed vertex begins
an edge that is �agged as boundary� If the bit is FALSE� then induced edges
are �agged as non�boundary�

The state required for edge �agging consists of one current �ag bit� Ini�
tially� the bit is TRUE� In addition� each processed vertex of an assembled

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non�boundary�

����� GL Commands within Begin�End

The only GL commands that are allowed within any Begin�End pairs are
the commands for specifying vertex coordinates� vertex color� normal coordi�
nates� and texture coordinates �Vertex� Color� Index� Normal� TexCo

ord	� EvalCoord and EvalPoint commands �see section ���	� commands
for specifying lighting material parameters �Material commands� see sec�
tion ������	� display list invocation commands �CallList and CallLists�
see section ��
	� and the EdgeFlag command� Executing Begin after Be

gin has already been executed but before an End is issued generates the
INVALID OPERATION error� as does executing End without a previous corre�
sponding Begin� Executing any other GL command within Begin�End
results in the error INVALID OPERATION�

��
 Vertex Speci�cation

Vertices are speci�ed by giving their coordinates in two� three� or four dimen�
sions� This is done using one of several versions of the Vertex command�

void Vertexf���gfsifdg� T coords 	 �
void Vertexf���gfsifdgv� T coords 	 �

A call to any Vertex command speci�es four coordinates� x� y� z� and w�
The x coordinate is the �rst coordinate� y is second� z is third� and w is
fourth� A call to Vertex� sets the x and y coordinates� the z coordinate is
implicitly set to zero and the w coordinate to one� Vertex� sets x� y� and
z to the provided values and w to one� Vertex� sets all four coordinates�
allowing the speci�cation of an arbitrary point in projective three�space�
Invoking a Vertex command outside of a Begin�End pair results in unde�
�ned behavior�

Current values are used in associating auxiliary data with a vertex as
described in section ���� A current value may be changed at any time by
issuing an appropriate command� The commands

void TexCoordf����gfsifdg� T coords 	 �
void TexCoordf����gfsifdgv� T coords 	 �

Version 1.0 - 1 July 1994

���� VERTEX SPECIFICATION ��

specify the current homogeneous texture coordinates� named s� t� r� and q�
The TexCoord� family of commands set the s coordinate to the provided
single argument while setting t and r to
 and q to �� Similarly� TexCoord�
sets s and t to the speci�ed values� r to
 and q to �� TexCoord� sets s� t�
and r� with q set to �� and TexCoord� sets all four texture coordinates�

The current normal is set using

void Normal�fbsifdg� T coords 	 �
void Normal�fbsifdgv� T coords 	 �

The current normal is set to the given coordinates whenever one of these
commands is issued� Byte� short� or integer values passed to Normal are
converted to �oating�point values as indicated for the corresponding �signed	
type in Table ��
�

Finally� there are several ways to set the current color� The GL stores
both a current single�valued color index� and a current four�valued RGBA
color� One or the other of these is signi�cant depending as the GL is in color
index mode or RGBA mode� The mode selection is made when the GL is
initialized�

The command to set RGBA colors is

void Colorf��gfbsifd ubusuig� T components 	 �
void Colorf��gfbsifd ubusuigv� T components 	 �

The Color command has two major variants� Color� and Color�� The
four value versions set all four values� The three value versions set R� G�
and B to the provided values� A is set to ��
� �The conversion of integer
color components �R� G� B� and A	 to �oating�point values is discussed in
section �����	

Versions of the Color command that take �oating�point values accept
values nominally between
�
 and ��
�
�
 corresponds to the minimum
while ��
 corresponds to the maximum �machine dependent	 value that a
component may take on in the framebu�er �see section ���� on colors and
coloring	� Values outside �
� �� are not clamped�

The command

void Indexfsifdg� T index 	 �
void Indexfsifdgv� T index 	 �

Index updates the current �single�valued	 color index� It takes one ar�
gument� the value to which the current color index should be set� Values

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

outside the �machine�dependent	 representable range of color indices are not
clamped�

The state required to support vertex speci�cation consists of four
�oating�point numbers to store the current texture coordinates s� t� r� and
q� three �oating�point numbers to store the three coordinates of the current
normal� four �oating�point values to store the current RGBA color� and one
�oating�point value to store the current color index� There is no notion of
a current vertex� so no state is devoted to vertex coordinates� The initial
values of s� t� and r of the current texture coordinates are zero� the initial
value of q is one� The initial current normal has coordinates �
�
� �	� The
initial RGBA color is �R�G�B�A	 � ��� �� �� �	� The initial color index is ��

��� Rectangles

There is a set of GL commands to support e�cient speci�cation of rectangles
as two corner vertices�

void Rectfsifdg� T x�� T y�� T x�� T y� 	 �
void Rectfsifdgv� T v����� T v���� 	 �

Each command takes either four arguments organized as two consecutive
pairs of �x� y	 coordinates� or two pointers to arrays each of which contains
an x value followed by a y value� The e�ect of the Rect command

Rect �x�� y�� x�� y���

has exactly the same e�ect as the following sequence of commands�

Begin�POLYGON��
Vertex��x�� y���

Vertex��x�� y���
Vertex��x�� y���

Vertex��x�� y���
End���

The appropriate Vertex� command would be invoked depending on which
of the Rect commands is issued�

Version 1.0 - 1 July 1994

���� COORDINATE TRANSFORMATIONS ��

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure ���� Vertex transformation sequence�

��
 Coordinate Transformations

Vertices� normals� and texture coordinates are transformed before their co�
ordinates are used to produce an image in the framebu�er� We begin with
a description of how vertex coordinates are transformed and how this trans�
formation is controlled�

Figure ��� diagrams the sequence of transformations that are applied to
vertices� The vertex coordinates that are presented to the GL are termed
object coordinates� The model�view matrix is applied to these coordinates to
yield eye coordinates� Then another matrix� called the projection matrix� is
applied to eye coordinates to yield clip coordinates� A perspective division
is carried out on clip coordinates to yield normalized device coordinates� A
�nal viewport transformation is applied to convert these coordinates into
window coordinates�

Object coordinates� eye coordinates� and clip coordinates are four�
dimensional� consisting of x� y� z� and w coordinates �in that order	� The
model�view and perspective matrices are thus
�
�

If a vertex in object coordinates is given by

�
BB�
xo
yo
zo
wo

�
CCA and the model�view

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

matrix is M � then the vertex�s eye coordinates are found as

�
BB�
xe
ye
ze
we

�
CCA � M

�
BB�
xo
yo
zo
wo

�
CCA �

Similarly� if P is the projection matrix� then the vertex�s clip coordinates
are �

BB�
xc
yc
zc
wc

�
CCA � P

�
BB�
xe
ye
ze
we

�
CCA �

The vertex�s normalized device coordinates are then�
� xd
yd
zd

�
A �

�
� xc�wc

yc�wc

zc�wc

�
A �

����� Controlling the Viewport

The viewport transformation is determined by the viewport�s width and
height in pixels� px and py � respectively� and its center �ox� oy	 �also in

pixels	� The vertex�s window coordinates�

�
� xw
yw
zw

�
A� are given by

�
� xw
yw
zw

�
A �

�
� �px��	xd � ox

�py��	yd � oy
��f � n	���zd � �n� f	��

�
A �

The factor and o�set applied to zd encoded by n and f are set using

void DepthRange� clampd n� clampd f 	 �

Each of n and f are clamped to lie within �
� ��� as are all arguments of type
clampd or clampf� zw is taken to be represented in �xed�point with at least
as many bits as there are in the depth bu�er of the framebu�er� We assume
that the �xed�point representation used represents each value k���m � �	�
where k � f
� �� � � � � �m � �g� as k �e�g� ��
 is represented in binary as a
string of all ones	�

Viewport transformation parameters are speci�ed using

Version 1.0 - 1 July 1994

���� COORDINATE TRANSFORMATIONS ��

void Viewport� int x� int y� sizei w� sizei h 	 �

where x and y give the x and y window coordinates of the viewport�s lower�
left corner and w and h give the viewport�s width and height� respectively�
The viewport parameters shown in the above equations are found from these
values as ox � x� w�� and oy � y � h��� px � w� py � h�

Viewport width and height are clamped to implementation�dependent
maximums when speci�ed� The maximum width and height may be found
by issuing an appropriate Get command �see Chapter �	� The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to� INVALID VALUE is generated if either w or h
is negative�

The state required to implement the viewport transformation is � inte�
gers� In the initial state� w and h are set to the width and height� respectively�
of the window into which the GL is to do its rendering� ox and oy are set to
w�� and h��� respectively� n and f are set to
�
 and ��
� respectively�

����� Matrices

The projection matrix and model�view matrix are set and modi�ed with
a variety of commands� The a�ected matrix is determined by the current
matrix mode� The current matrix mode is set with

void MatrixMode� enum mode 	 �

which takes one of the three pre�de�ned constants TEXTURE� MODELVIEW� or
PROJECTION as the argument value� TEXTURE is described later� If the current
matrix mode is MODELVIEW� then matrix operations apply to the model�view
matrix� if PROJECTION� then they apply to the projection matrix�

The two basic commands for a�ecting the current matrix are

void LoadMatrixffdg� T m��	� 	 �
void MultMatrixffdg� T m��	� 	 �

LoadMatrix takes a pointer to a
�
 matrix stored in column�major order
as �� consecutive �oating�point values� i�e� as

�
BB�
a� a� a� a��
a� a� a�� a��
a� a	 a�� a��
a� a
 a�� a��

�
CCA �

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

�This di�ers from the standard row�major C ordering for matrix elements� If
the standard ordering is used� all of the subsequent transformation equations
are transposed� and the columns representing vectors become rows�	

The speci�ed matrix replaces the current matrix with the one pointed to�
MultMatrix takes the same type argument as LoadMatrix� but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product� If C is the current matrix and M is the matrix pointed
to by MultMatrix�s argument� then the resulting current matrix� C�� is

C� � C �M�

The command

void LoadIdentity� void 	 �

e�ectively calls LoadMatrix with the identity matrix��
BB�
�

 �

 �

 �

�
CCA �

There are a variety of other commands that manipulate matrices� Ro

tate� Translate� Scale� Frustum� and Ortho manipulate the current ma�
trix� Each computes a matrix and then invokes MultMatrix with this
matrix� In the case of

void Rotateffdg� T �� T x� T y� T z 	 �

� gives an angle of rotation in degrees� the coordinates of a vector v are given
by v � �x y z	T � The computed matrix is a counter�clockwise rotation about
the line through the origin with the speci�ed axis when that axis is pointing
up �i�e� the right�hand rule determines the sense of the rotation angle	� The
matrix is thus �

BB�

R

 �

�
CCA �

Let u � v�jjvjj� �x� y� z� 	T � If

S �

�
�
 �z� y�

z�
 �x�

�y� x�

�
A

Version 1.0 - 1 July 1994

���� COORDINATE TRANSFORMATIONS ��

then

R � uuT � cos ��I � uuT 	 � sin �S�

The arguments to

void Translateffdg� T x� T y� T z 	 �

give the coordinates of a translation vector as �x y z	T � The resulting matrix
is a translation by the speci�ed vector�

�
BB�
�

 x

 �
 y

 � z

 �

�
CCA �

void Scaleffdg� T x� T y� T z 	 �

produces a general scaling along the x�� y�� and z� axes� The corresponding
matrix is �

BB�
x

 y

 z

 �

�
CCA �

For

void Frustum� double l� double r� double b� double t�
double n� double f 	 �

the coordinates �l b � n	T and �r t � n	T specify the points on the near
clipping plane that are mapped to the lower�left and upper�right corners of
the window� respectively �assuming that the eye is located at �

	T 	� f
gives the distance from the eye to the far clipping plane� If either n or f is less
than or equal to zero� the error INVALID VALUE results� The corresponding
matrix is �

BBB�
�n
r�l

 r�l
r�l

 �n
t�b

t�b
t�b

 �f�n
f�n

� �fn
f�n

 ��

�
CCCA �

void Ortho� double l� double r� double b� double t�
double n� double f 	 �

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

describes a matrix that produces parallel projection� �l b�n	T and �r t �n	T

specify the points on the near clipping plane that are mapped to the lower�
left and upper�right corners of the window� respectively� f gives the distance
from the eye to the far clipping plane� The corresponding matrix is�

BBB�
�

r�l

 � r�l

r�l

 �
t�b

 � t�b
t�b

 � �
f�n

�f�n
f�n

 �

�
CCCA �

There is another
�
 matrix that is applied to texture coordinates� This
matrix is applied as

�
BB�
m� m� m� m��

m� m� m�� m��

m� m	 m�� m��

m� m
 m�� m��

�
CCA
�
BB�
s

t
r

q

�
CCA �

where the left matrix is the current texture matrix� The matrix is applied
to the coordinates resulting from texture coordinate generation �which may
simply be the current texture coordinates	� and the resulting transformed co�
ordinates become the texture coordinates associated with a vertex� Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix�

There is a stack of matrices for each of the matrix modes� For MODELVIEW
mode� the stack depth is at least �� �that is� there is a stack of at least ��
model�view matrices	� For the other modes� the depth is at least �� The
current matrix in any mode is the matrix on the top of the stack for that
mode�

void PushMatrix� void 	 �

pushes the stack down by one� duplicating the current matrix in both the
top of the stack and the entry below it�

void PopMatrix� void 	 �

pops the top entry o� of the stack� replacing the current matrix with the
matrix that was the second entry in the stack� The pushing or popping takes
place on the stack corresponding to the current matrix mode� Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW�
pushing a matrix onto a full stack generates STACK OVERFLOW�

Version 1.0 - 1 July 1994

���� COORDINATE TRANSFORMATIONS ��

The state required to implement transformations consists of a three�
valued integer indicating the current matrix mode� a stack of at least two

 �
 matrices for each of PROJECTION and TEXTURE with associated stack
pointers� and a stack of at least ��
�
 matrices with an associated stack
pointer for MODELVIEW� Initially� there is only one matrix on each stack� and
all matrices are set to the identity� The initial matrix mode is MODELVIEW�

����� Normal Transformation

Finally� we consider how the model�view matrix a�ects normals� Normals
are of interest only in eye coordinates� so the rules governing their transfor�
mation to other coordinate systems are not examined�

Normals sent to the GL may or may not have unit length� If normal�
ization is enabled� then normals speci�ed with the Normal� command are
normalized after transformation� Normalization is controlled with

void Enable� enum target 	 �

and

void Disable� enum target 	 �

with target equal to NORMALIZE� This requires one bit of state� The initial
state is for normals not to be normalized�

A normal at a point de�nes a plane at that point� If the normal is

�nx ny nz 	 and the point is

�
BB�
x

y
z
w

�
CCA� then for the point to satisfy the

plane equation we must have

�nx ny nz q 	

�
BB�
x
y
z

w

�
CCA �

whence

q �

��nx ny nz 	

�
� x

y
z

�
A

w
� w ��

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

or q �
 if w �
� Therefore� if the model�view matrix is M � then the
transformed plane equation is

�nx
� ny

� nz
� q� 	 � �nx ny nz q 	 �M��

and the transformed normal is

�q
nx�

� � ny �
� � nz �

�

�
�nx

�

ny
�

nz
�

�
A � ����	

If normalization is disabled� then the square root in equation ��� is replaced
with �� Otherwise� the square root remains as written�

Because we specify neither the �oating�point format nor the means
for matrix inversion� we cannot specify behavior in the case of a poorly�
conditioned �nearly singular	 model�view matrix M � In case of an exactly
singular matrix� the transformed normal is unde�ned� If the GL implementa�
tion determines that the model�view matrix is uninvertible� then the entries
in the inverted matrix are arbitrary� In any case� neither normal transfor�
mation nor use of the transformed normal may lead to GL interruption or
termination�

����� Generating texture coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates� The command

void TexGenfifdg� enum coord� enum pname� T param 	 �
void TexGenfifdgv� enum coord� enum pname� T params 	 �

controls texture coordinate generation� coord must be one of the constants
S� T� R� or Q� indicating that the pertinent coordinate is the s� t� r� or q

coordinate� respectively� In the �rst form of the command� params is a
pointer to an array of values that specify texture generation parameters� in
the second form� params must be a value specifying a single�valued texture
generation parameter� pname must be one of the three symbolic constants
TEXTURE GEN MODE� OBJECT PLANE� or EYE PLANE� If pname is TEXTURE GEN MODE�
then either params points to or params is an integer that is one of the
symbolic constants OBJECT LINEAR� EYE LINEAR� or SPHERE MAP�

Version 1.0 - 1 July 1994

���� COORDINATE TRANSFORMATIONS ��

If TEXTURE GEN MODE indicates OBJECT LINEAR� then the generation function
for the coordinate indicated by coord is

g � p�xo � p�yo � p�zo � p�wo�

xo� yo� zo� and wo are the object coordinates of the vertex� p�� � � � � p� are
speci�ed by calling TexGen with pname set to OBJECT PLANE in which case
params points to an array containing p�� � � � � p�� There is a distinct group of
plane equation coe�cients for each texture coordinate� coord indicates the
coordinate to which the speci�ed coe�cients pertain�

If TEXTURE GEN MODE indicates EYE LINEAR� then the function is

g � p��xe � p��ye � p��ze � p��we

where

� p�� p�� p�� p�� 	 � � p� p� p� p� 	M
��

xe� ye� ze� and we are the eye coordinates of the vertex� p�� � � � � p� are
set by calling TexGen with pname set to EYE PLANE in correspondence with
setting the coe�cients in the OBJECT PLANE case� M is the model�view matrix
in e�ect when p�� � � � � p� are speci�ed� Computed texture coordinates may
be inaccurate or unde�ned if M is poorly conditioned or singular�

When used with a suitably constructed texture image� calling TexGen
with TEXTURE GEN MODE indicating SPHERE MAP can simulate the re�ected im�
age of a spherical environment on a polygon� SPHERE MAP texture coordinates
are generated as follows� Denote the unit vector pointing from the origin to
the vertex �in eye coordinates	 by u� Denote the current normal� after trans�
formation to eye coordinates� by n�� Let r � � rx ry rz 	

T � the re�ection
vector� be given by

r � u� �n�n�Tu�

and let m � �
q
r�x � r�y � �rz � �	�� Then the value assigned to an s coor�

dinate �the �rst TexGen argument value is S	 is s � rx�m � �
� � the value

assigned to a t coordinate is t � ry�m � �
� � Calling TexGen with a co�

ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID ENUM�

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S� TEXTURE GEN T�
TEXTURE GEN R� or TEXTURE GEN Q �each indicates the corresponding texture
coordinate	� When enabled� the speci�ed texture coordinate is computed

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

according to the current EYE LINEAR� OBJECT LINEAR or SPHERE MAP speci�ca�
tion� depending on the current setting of TEXTURE GEN MODE for that coordi�
nate� When disabled� subsequent vertices will take the indicated texture
coordinate from the current texture coordinates�

The state required for texture coordinate generation comprises a three�
valued integer for each coordinate indicating coordinate generation mode�
and a bit for each coordinate to indicate whether texture coordinate genera�
tion is enabled or disabled� In addition� four coe�cients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR� The initial state
has the texture generation function disabled for all texture coordinates� The
initial values of pi for s are all
 except p� which is one� for t all the pi are
zero except p�� which is �� The values of pi for r and q are all
� These values
of pi apply for both the EYE LINEAR and OBJECT LINEAR versions� Initially all
texture generation modes are EYE LINEAR�

���� Clipping

Primitives are clipped to the clip volume� In clip coordinates� the view
volume is de�ned by

�wc � xc � wc

�wc � yc � wc

�wc � zc � wc

�

This view volume may be further restricted by as many as n client�de�ned
clip planes to generate the clip volume� �n is an implementation dependent
maximum that must be at least ��	 Each client�de�ned plane speci�es a
half�space� The clip volume is the intersection of all such half�spaces with
the view volume �if there no client�de�ned clip planes are enabled� the clip
volume is the view volume	�

A client�de�ned clip plane is speci�ed with

void ClipPlane� enum p� double eqn�
� 	 �

The value of the �rst argument� p� is a symbolic constant� CLIP PLANEi� where
i is an integer between
 and n � �� indicating one of n client�de�ned clip
planes� eqn is an array of four double�precision �oating�point values� These
are the coe�cients of a plane equation in object coordinates� p�� p�� p�� and
p� �in that order	� The inverse of the current model�view matrix is applied
to these coe�cients� at the time they are speci�ed� yielding

� p�� p�� p�� p�� 	 � � p� p� p� p� 	M
��

Version 1.0 - 1 July 1994

���	� CLIPPING ��

�where M is the current model�view matrix� the resulting plane equation is
unde�ned ifM is singular and may be inaccurate ifM is poorly�conditioned	
to obtain the plane equation coe�cients in eye coordinates� All points with
eye coordinates � xe ye ze we 	

T that satisfy

� p�� p�� p�� p�� 	

�
BB�
xe
ye
ze
we

�
CCA �

lie in the half�space de�ned by the plane� points that do not satisfy this
condition do not lie in the half�space�

Client�de�ned clip planes are enabled with the generic Enable com�
mand and disabled with the Disable command� The value of the argument
to either command is CLIP PLANEi where i is an integer between
 and n�
specifying a value of i enables or disables the plane equation with index i�
The constants obey CLIP PLANEi � CLIP PLANE�� i�

If the primitive under consideration is a point� then clipping passes it
unchanged if it lies within the clip volume� otherwise� it is discarded� If the
primitive is a line segment� then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume�
If part of the line segment lies in the volume and part lies outside� then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices� A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume�

This clipping produces a value�
 � t � �� for each clipped vertex� If the
coordinates of a clipped vertex are P and the original vertices� coordinates
are P� and P�� then t is given by

P � tP� � ��� t	P��

The value of t is used in color and texture coordinate clipping �sec�
tion ������	�

If the primitive is a polygon� then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise�
Polygon clipping may cause polygon edges to be clipped� but because poly�
gon connectivity must be maintained� these clipped edges are connected by
new edges that lie along the clip volume�s boundary� Thus� clipping may
require the introduction of new vertices into a polygon� Edge �ags are asso�
ciated with these vertices so that edges introduced by clipping are �agged

Version 1.0 - 1 July 1994

�
 CHAPTER �� OPENGL OPERATION

as boundary �edge �ag TRUE	� and so that original edges of the polygon that
become cut o� at these vertices retain their original �ags�

If it happens that a polygon intersects an edge of the clip volume�s
boundary� then the clipped polygon must include a point on this boundary
edge� This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon� We impose this
requirement because the polygon may not be exactly planar�

A line segment or polygon whose vertices have wc values of di�ering signs
may generate multiple connected components after clipping� GL implemen�
tations are not required to handle this situation� That is� only the portion of
the primitive that lies in the region of wc �
 need be produced by clipping�

Primitives rendered with clip planes must satisfy a complementarity cri�
terion� Suppose a single clip plane with coe�cients � p�� p�� p�� p�� 	 �or a
number of similarly speci�ed clip planes	 is enabled and a series of primitives
are drawn� Next� suppose that the original clip plane is respeci�ed with co�
e�cients ��p�� �p�� �p�� �p�� 	 �and correspondingly for any other clip
planes	 and the primitives are drawn again �and the GL is otherwise in the
same state	� In this case� primitives must not be missing any pixels� nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes�

Clipping requires at least � sets of plane equations �each consisting of
four double�precision �oating�point coe�cients	 and at least � corresponding
bits indicating which of these client�de�ned plane equations are enabled� In
the initial state� all client�de�ned plane equation coe�cients are zero and
all planes are disabled�

���� Current Raster Position

The current raster position is used by commands that directly a�ect pixels in
the framebu�er� These commands� which bypass vertex transformation and
primitive assembly� are described in the next chapter� The current raster
position� however� shares some of the characteristics of a vertex�

The current raster position consists of three window coordinates xw� yw �
and zw� a clip coordinate wc value� an eye coordinate distance� a valid bit�
and associated data consisting of a color and texture coordinates� It is set
using one of the RasterPos commands�

void RasterPosf���gfsifdg� T coords 	 �
void RasterPosf���gfsifdgv� T coords 	 �

Version 1.0 - 1 July 1994

����� CURRENT RASTER POSITION ��

RasterPos� takes four values indicating x� y� z� and w� RasterPos� �or
RasterPos�	 is analogous� but sets only x� y� and z with w implicitly set
to � �or only x and y with z implicitly set to
 and w implicitly set to �	�

The coordinates are treated as if they were speci�ed in a Vertex com�
mand� The x� y� z� and w coordinates are transformed by the current
model�view and perspective matrices� These coordinates� along with cur�
rent values� are used to generate a color and texture coordinates just as is
done for a vertex� The color and texture coordinates so produced replace the
color and texture coordinates stored in the current raster position�s associ�
ated data� The distance from the origin of the eye coordinate system to the
vertex as transformed by only the current model�view matrix replaces the
current raster distance� This distance can be approximated �see section ���	�

The transformed coordinates are passed to clipping as if they represented
a point� If the �point� is not culled� then the projection to window coor�
dinates is computed �section ���	 and saved as the current raster position�
and the valid bit is set� If the �point� is culled� the current raster position
and its associated data become indeterminate and the valid bit is cleared�
Figure ��� summarizes the behavior of the current raster position�

The current raster position requires �ve single�precision �oating�point
values for its xw � yw � and zw window coordinates� its wc clip coordinate�
and its eye coordinate distance� a single valid bit� a color �RGBA and color
index	� and texture coordinates for associated data� In the initial state� the
coordinates and texture coordinates are both �
�
�
� �	� the eye coordinate
distance is
� the valid bit is set� the associated RGBA color is ��� �� �� �	
and the associated color index color is �� In RGBA mode� the associated
color index always has its initial value� in color index mode� the RGBA color
always maintains its initial value�

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

lighting

vertex
transformation

Associated
Data

Rasterpos In

Current
Raster

Position

Raster
Position

Validclip project

Current
Color

TexGenCurrent
Texture

Coodinatese

Figure ���� The current raster position and how it is set�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING ��

Color

[0,2k−1]

[0.0,1.0]

RGBA

Lighting

Clamp to
[0.0, 1.0]

Flatshade?
Primitive
Clipping

Color
Clipping

Convert to
fixed−point

RGBA

Convert to
[0.0,1.0]

Convert to
float

[0,2n−1]

Index

[0.0,2n−1]

Mask to

[0.0, 2n−1]

Color

Index

Convert to
fixed−point

RGBA
Color
Index

Current
RGBA
Color

Current
Color
Index

[−2k−1,2k−1]
Convert to
[−1.0,1.0]

Figure ��
� Processing of colors� n is the number of bits in a color index�
m is the number of bits an R� G� B� or A component� See Table ��� for the
interpretation of k�

���� Colors and Coloring

Figure ��� diagrams the processing of colors before rasterization� In�
coming colors arrive in one of several formats� Table ��
 summarizes the
conversions that take place on R� G� B� and A components depending on
which version of the Color command was invoked to specify the compo�
nents� As a result of limited precision� some converted values will not be
represented exactly� In color index mode� a single�valued color index is not
mapped�

Next� lighting� if enabled� produces a color� If lighting is disabled� the
current color is used in further processing� After lighting� RGBA colors
are clamped to the range �
� ��� A color index is converted to �xed�point

Version 1.0 - 1 July 1994

�� CHAPTER �� OPENGL OPERATION

Command Element Type Conversion Formula

Colorub Unsigned ��bit integer c���
� �	

Colorb Signed ��bit integer ��c� �	���
 � �	

Colorus Unsigned ���bit integer c������ �	

Colors Signed ���bit integer ��c� �	������ �	

Colorui Unsigned ���bit integer c������ �	

Colori Signed ���bit integer ��c� �	������ �	

Colorf Floating�point c

Table ��
� RGBA Color component conversions� The leftmost column indi�
cates the correspondence between color setting commands and conversions�
c represents the value of the component to be converted�

and then its integer portion is masked �see section ������	� After clamping
or masking� a primitive may be �atshaded� indicating that all vertices of
the primitive are to have the same color� Finally� if a primitive is clipped�
then colors �and texture coordinates	 must be computed at the vertices
introduced or modi�ed by clipping�

������ Lighting

GL lighting computes a color for each vertex sent to the GL� This is accom�
plished by applying an equation de�ned by a client�speci�ed lighting model
to a collection of parameters that can include the vertex coordinates� the
coordinates of one or more light sources� the current normal� and parameters
de�ning the characteristics of the light sources and a current material� The
following discussion assumes that the GL is in RGBA mode� �Color index
lighting is described in section �������	

Lighting may be in one of two states�

�� Lighting O�� In this state the color assigned to a vertex is the current
color�

�� Lighting On� In this state� a vertex�s color is found by computing a
value given the current lighting parameters�

Lighting is turned either on or o� using the generic Enable or Disable
commands with the symbolic value LIGHTING�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING ��

Lighting Operation

A lighting parameter is of one of �ve types� color� position� direction� real�
or boolean� A color parameter consists of four �oating�point elements� one
for each of R� G� B� and A� in that order� There are no restrictions on
the allowable values for these parameters� A position parameter consists
of four �oating�point coordinates �x� y� z� and w	 that specify a position
in object coordinates �w may� in some cases� be zero� indicating a point at
in�nity in the direction given by x� y� and z	� A direction parameter consists
of three �oating�point coordinates �x� y� and z	 that specify a direction in
object coordinates� A real parameter is one �oating�point value� The various
values and their types are summarized in Table ���� The result of a lighting
computation is unde�ned if a value for a parameter is speci�ed that is outside
the range given for that parameter in the table�

There are n light sources� indexed by i �
� � � � � n��� �n is an implemen�
tation dependent maximum that must be at least ��	 Note that the default
values for dcli and scli di�er for i �
 and i �
�

Before specifying the way that lighting computes colors� we introduce
operators and notation that simplify the expressions involved� If c� and
c� are colors without alpha where c� � �r�� g�� b�	 and c� � �r�� g�� b�	�
then de�ne c� � c� � �r�r�� g�g�� b�b�	� Addition of colors is accomplished
by addition of the components� Multiplication of colors by a scalar means
multiplying each component by that scalar� If d� and d� are directions� then
de�ne

d� 	 d� � maxfd� � d��
g�

�Directions are taken to have three coordinates�	 If P� and P� are �homoge�

neous� with four coordinates	 points then let
���

P�P� be the unit vector that

points from P� to P�� Note that if P� has a zero w coordinate and P� has

non�zero w coordinate� then
���

P�P� is the unit vector corresponding to the

direction speci�ed by the x� y� and z coordinates of P�� if P� has a zero w

coordinate and P� has a non�zero w coordinate then
���

P�P� is the unit vector

that is the negative of that corresponding to the direction speci�ed by P��

If both P� and P� have zero w coordinates� then
���

P�P� is the unit vector

obtained by normalizing the direction corresponding to P� � P��
If d is an arbitrary direction� then let �d be the unit vector in d�s direction�

Let kP�P�k be the distance between P� and P�� Finally� let V be the point
corresponding to the vertex being lit� and n be the corresponding normal�
Let Pe be the eyepoint ��
�
�
� �	 in eye coordinates	�

Version 1.0 - 1 July 1994

 CHAPTER �� OPENGL OPERATION

Parameter Type Default Value Description

Material Parameters

acm color �
���
���
��� ��
	 ambient color of material

dcm color �
���
���
��� ��
	 di�use color of material

scm color �
�
�
�
�
�
� ��
	 specular color of material

ecm color �
�
�
�
�
�
� ��
	 emissive color of material

srm real
�
 specular exponent �range�
�
�
� ����
�	

am real
�
 ambient color index

dm real ��
 di�use color index

sm real ��
 specular color index

Light Source Parameters

acli color �
�
�
�
�
�
� ��
	 ambient intensity of light i

dcli�i �
	 color ���
� ��
� ��
� ��
	 di�use intensity of light

dcli�i �
	 color �
�
�
�
�
�
� ��
	 di�use intensity of light i

scli�i �
	 color ���
� ��
� ��
� ��
	 specular intensity of light

scli�i �
	 color �
�
�
�
�
�
� ��
	 specular intensity of light i

Ppli position �
�
�
�
� ��
�
�
	 position of light i

sdli direction �
�
�
�
����
	 direction of spotlight for light
i

srli real
�
 spotlight exponent for light i
�range� �
�
� ����
�	

crli real ��
�
 spotlight cuto� angle for
light i �range� �
�
� �
�
��
��
�
	

k�i real ��
 constant attenuation factor
for light i �range� �
�
��		

k�i real
�
 linear attenuation factor for
light i �range� �
�
��		

k�i real
�
 quadratic attenuation factor
for light i �range� �
�
��		

Lighting Model Parameters

acs color �
���
���
��� ��
	 ambient color of scene

vbs boolean FALSE viewer assumed to be at
�
�
�
	 in eye coordinates
�TRUE	 or �
�
��	 �FALSE	

tbs boolean FALSE use two�sided lighting mode

Table ���� Summary of lighting parameters� The range of individual color
components is ������	�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING
�

The color c produced by lighting a vertex is given by

c � ecm

� acm � acs

�
n��X
i��

�atti	�spoti	 �acm � acli

� �n	
�

VPpli	dcm � dcli

� �fi	�n	 �hi	
srmscm � scli�

where

fi �

�
�� n	

�

VPpli ��
�

� otherwise�
����	

hi �

��
�
�

VPpli �

�

VPe� vbs � TRUE�

�

VPpli � �

 � 	T � vbs � FALSE�

����	

atti �

���
��

�
k�i � k�ikVPplik � k�ikVPplik

� � if Ppli�s w ��
�

��
� otherwise�

���
	

spoti �

����
���

�
���

PpliV	 �sdli	

srli � crli �� ��
�
�
���

PpliV	 �sdli � cos�crli	�

�
� crli �� ��
�
�
���

PpliV	 �sdli � cos�crli	�

��
� crli � ��
�
�

����	

All computations are carried out in eye coordinates�
The value of A produced by lighting is the alpha value associated with

dcm� Results of lighting are unde�ned if the we coordinate �w in eye coor�
dinates	 of V is zero�

Lighting may operate in two�sided mode �tbs � TRUE	� in which a front
color is computed with one set of material parameters �the front material	
and a back color is computed with a second set of material parameters �the
back material	� This second computation replaces n with �n� If tbs � FALSE�

Version 1.0 - 1 July 1994

� CHAPTER �� OPENGL OPERATION

then the back color and front color are both assigned the color computed
using the front material with n�

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part� If the primitive is a point or a line
segment� the front color is always selected� If it is a polygon� then the
selection is based on the sign of the �clipped or unclipped	 polygon�s signed
area computed in window coordinates� One way to compute this area is

a �
�

�

n��X
i��

xiwy
i��
w � xi��w yiw ����	

where xiw and yiw are the x and y window coordinates of the ith vertex of
the n�vertex polygon �vertices are numbered starting at zero for purposes of
this computation	 and i� � is �i� �	 mod n� The interpretation of the sign
of this value is controlled with

void FrontFace� enum dir 	 �

Setting dir to CCW �corresponding to counter�clockwise orientation of the
projected polygon in window coordinates	 indicates that if a �
� then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if a �
� then the front color is selected� If dir is CW� then
a is replaced by �a in the above inequalities� This requires one bit of state�
initially� it indicates CCW�

������ Lighting Parameter Speci�cation

Lighting parameters are divided into three categories� material parameters�
light source parameters� and lighting model parameters �see Table ���	� Sets
of lighting parameters are speci�ed with

void Materialfifg� enum face� enum pname� T param 	 �
void Materialfifgv� enum face� enum pname� T params 	 �
void Lightfifg� enum light� enum pname� T param 	 �
void Lightfifgv� enum light� enum pname� T params 	 �
void LightModelfifg� enum pname� T param 	 �
void LightModelfifgv� enum pname� T params 	 �

pname is a symbolic constant indicating which parameter is to be set �see
Table ���	� In the vector versions of the commands� params is a pointer to
a group of values to which to set the indicated parameter� The number of

Version 1.0 - 1 July 1994

����� COLORS AND COLORING
�

values pointed to depends on the parameter being set� In the non�vector
versions� param is a value to which to set a single�valued parameter� �If
param corresponds to a multi�valued parameter� the error INVALID ENUM re�
sults�	 For the Material command� face must be one of FRONT� BACK� or
FRONT AND BACK� indicating that the property name of the front or back ma�
terial� or both� respectively� should be set� In the case of Light� light is a
symbolic constant of the form LIGHTi� indicating that light i is to have the
speci�ed parameter set� The constants obey LIGHTi � LIGHT�� i�

Table ��� gives� for each of the three parameter groups� the correspon�
dence between the pre�de�ned constant names and their names in the light�
ing equations� along with the number of values that must be speci�ed with
each� Color parameters speci�ed with Material and Light are converted
to �oating�point values �if speci�ed as integers	 as indicated in Table ��

for signed integers� The error INVALID VALUE occurs if a speci�ed lighting
parameter lies outside the allowable range given in Table ���� �The sym�
bol ��� indicates the maximum representable magnitude for the indicated
type�	

The current model�view matrix is applied to the position parameter indi�
cated with Light for a particular light source when that position is speci�ed�
These transformed values are the values used in the lighting equation� The
spotlight direction is transformed when it is speci�ed into a value of sdli
using the rules given for transforming normals at the end of section ������

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHTi �i is in the range
 to n � �� where n is the
implementation�dependent number of lights	� If light i is disabled� the ith
term in the lighting equation is e�ectively removed from the summation�

������ ColorMaterial

It is possible to attach one or more material properties to the current
color� so that they continuously track its component values� This behavior
is enabled and disabled by calling Enable or Disable with the symbolic
value COLOR MATERIAL�

The command that controls which of these modes is selected is

void ColorMaterial� enum face� enum mode 	 �

face is one of FRONT� BACK� or FRONT AND BACK� indicating whether the front
material� back material� or both are a�ected by the current color� mode
is one of EMISSION� AMBIENT� DIFFUSE� SPECULAR� or AMBIENT AND DIFFUSE and

Version 1.0 - 1 July 1994

 CHAPTER �� OPENGL OPERATION

Parameter Name Number of values

Material Parameters �Material	

acm AMBIENT

dcm DIFFUSE

acm�dcm AMBIENT AND DIFFUSE

scm SPECULAR

ecm EMISSION

srm SHININESS �

am� dm� sm COLOR INDEXES �

Light Source Parameters �Light	

acli AMBIENT

dcli DIFFUSE

scli SPECULAR

Ppli POSITION

sdli SPOT DIRECTION �

srli SPOT EXPONENT �

crli SPOT CUTOFF �

k� CONSTANT ATTENUATION �

k� LINEAR ATTENUATION �

k� QUADRATIC ATTENUATION �

Lighting Model Parameters �LightModel	

acs LIGHT MODEL AMBIENT

vbs LIGHT MODEL LOCAL VIEWER �

tbs LIGHT MODEL TWO SIDE �

Table ���� Correspondence of lighting parameter symbols to names�
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING
�

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure ���� ColorMaterial operation� Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode� Only the front material properties are included in this
�gure� The back material properties are treated identically�

Version 1.0 - 1 July 1994

� CHAPTER �� OPENGL OPERATION

speci�es which material property or properties track the current color� If
mode is EMISSION� AMBIENT� DIFFUSE� or SPECULAR� then the value of ecm�
acm� dcm or scm� respectively� will track the current color� If mode is
AMBIENT AND DIFFUSE� both acm and dcm track the current color� The re�
placements made to material properties are permanent� the replaced values
remain until changed by either sending a new color or by setting a new ma�
terial value when ColorMaterial is not currently enabled to override that
particular value� When COLOR MATERIAL is enabled� the indicated parameter
or parameters always track the current color� For instance� calling

ColorMaterial�FRONT� AMBIENT�

while COLOR MATERIAL is enabled sets the front material acm to the value of
the current color�

������ Lighting State

The state required for lighting consists of all of the lighting parameters �front
and back material parameters� lighting model parameters� and at least � sets
of light parameters	� a bit indicating whether a back color distinct from the
front color should be computed� at least � bits to indicate which lights are
enabled� a �ve�valued variable indicating the current ColorMaterial mode�
a bit indicating whether or not COLOR MATERIAL is enabled� and a single bit
to indicate whether lighting is enabled or disabled� In the initial state� all
lighting parameters have their default values� Back color evaluation does
not take place� ColorMaterial is FRONT AND BACK and AMBIENT AND DIFFUSE�
and both lighting and COLOR MATERIAL are disabled�

�����	 Color Index Lighting

A simpli�ed lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting� but none of the RGBA
material parameters� First� the RGBA di�use and specular intensities of
light i �dcli and scli� respectively	 determine color index di�use and specular
light intensities� dli and sli from

dli � ���
	R�dcli	 � ����	G�dcli	 � ����	B�dcli	

and

sli � ���
	R�scli	 � ����	G�scli	 � ����	B�scli	�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING
�

R�x	 indicates the R component of the color x and similarly for G�x	 and
B�x	�

Next� let

s �
nX

i��

�atti	�spoti	�sli	�fi	�n	 �hi	
srm

where atti and spoti are given by equations ��
 and ���� respectively� and fi
and �hi are given by equations ��� and ���� respectively� Let s� � minfs� �g�
Finally� let

d �
nX
i��

�atti	�spoti	�dli	�n	
�

VPpli	�

Then color index lighting produces a value c� given by

c � am � d��� s�	�dm � am	 � s��sm � am	�

The �nal color index is

c� � minfc� smg�

The values am� dm and sm are material properties described in Tables ���
and ���� Any ambient light intensities are incorporated into am� As with
RGBA lighting� disabled lights cause the corresponding terms from the sum�
mations to be omitted� The interpretation of tbs and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting�

The values am� dm� and sm are set with Material using prop of
COLOR INDEXES� Their initial values are
� �� and �� respectively� The ad�
ditional state consists of three �oating�point values� These values have no
e�ect on RGBA lighting�

������ Clamping or Masking

After lighting� RGBA colors are clamped to the range �
� ��� For a color
index� the index is �rst converted to �xed�point with an unspeci�ed number
of bits to the right of the binary point� the nearest �xed�point value is
selected� Then� the bits to the right of the binary point are left alone while
the integer portion is masked �bitwise ANDed	 with �n � �� where n is the
number of bits in a color in the color index bu�er �bu�ers are discussed in
chapter
	�

Version 1.0 - 1 July 1994

� CHAPTER �� OPENGL OPERATION

Primitive type of polygon i Vertex

single polygon �i
 �	 �

triangle strip i� �

triangle fan i� �

independent triangle �i

quad strip �i� �

independent quad
i

Table ���� Polygon �atshading color selection� The color used for �atshading
the ith polygon generated by the indicated Begin�End type is the current
color �if lighting is disabled	 in e�ect when the indicated vertex is speci�ed�
If lighting is enabled� the color is produced by lighting the indicated ver�
tex� Vertices are numbered � through n� where n is the number of vertices
between the Begin�End pair�

�����
 Flatshading

A primitive may be �atshaded� meaning that all vertices of the primitive are
assigned the same color� This color is the color of the vertex that spawned
the primitive� For a point� this is the color associated with the point� For a
line segment� it is the color of the second ��nal	 vertex of the segment� For
a polygon� the selected color depends on how the polygon was generated�
Table ��� summarizes the possibilities�

Flatshading is controlled by

void ShadeModel� enum mode 	 �

mode value must be either of the symbolic constants SMOOTH or FLAT� If mode
is SMOOTH �the initial state	� vertex colors are treated individually� If mode is
FLAT� �atshading is turned on� ShadeModel thus requires one bit of state�

������ Color and Texture Coordinate Clipping

After lighting� clamping or masking and possible �atshading� colors are
clipped� If the color is associated with a vertex that lies within the clip
volume� it is una�ected by clipping� If a primitive is clipped� however� the
colors assigned to vertices produced by clipping are clipped colors�

Version 1.0 - 1 July 1994

����� COLORS AND COLORING
�

Let the color assigned to the two vertices P� and P� of an unclipped
edge be c� and c�� The value of t �Section ���
	 for a clipped point P is
used to obtain the color associated with P as

c � tc� � ��� t	c��

�For a color index color� multiplying a color by a scalar means multiplying
the index by the scalar� For an RGBA color� it means multiplying each of R�
G� B� and A by the scalar�	 Polygon clipping may create a clipped vertex
along an edge of the clip volume�s boundary� This situation is handled by
noting that polygon clipping proceeds by clipping against one plane of the
clip volume�s boundary at a time� Color clipping is done in the same way�
so that clipped points always occur at the intersection of polygon edges
�possibly already clipped	 with the clip volume�s boundary�

Texture coordinates must also be clipped when a primitive is clipped�
The method is exactly analogous to that used for color clipping�

������ Final Color Processing

For an RGBA color� each color component �which lies in �
���	 is converted
�by rounding to nearest	 to a �xed�point value with m bits� We assume
that the �xed�point representation used represents each value k���m � �	�
where k � f
� �� � � � � �m � �g� as k �e�g� ��
 is represented in binary as a
string of all ones	� m must be at least as large as the number of bits in the
corresponding component of the framebu�er� If the framebu�er does not
contain an A component� then m must be at least � for A� A color index
is converted �by rounding to nearest	 to a �xed�point value with at least as
many bits as there are in the color index portion of the framebu�er�

Because a number of the form k���m��	 may not be represented exactly
as a limited�precision �oating�point quantity� we place a further requirement
on the �xed�point conversion of RGBA components� Suppose that lighting
is disabled� the color associated with a vertex has not been clipped� and one
of Colorub� Colorus� or Colorui was used to specify that color� When
these conditions are satis�ed� an RGBA component must convert to a value
that matches the component as speci�ed in the Color command� if m is less
than the number of bits b with which the component was speci�ed� then the
converted value must equal the most signi�cant m bits of the speci�ed value�
otherwise� the most signi�cant b bits of the converted value must equal the
speci�ed value�

Version 1.0 - 1 July 1994

Chapter �

Rasterization

Rasterization is the process by which a primitive is converted to a two�
dimensional image� Each point of this image contains such information as
color and depth� Thus� rasterizing a primitive consists of two parts� The
�rst is to determine which squares of an integer grid in window coordinates
are occupied by the primitive� The second is assigning a color and a depth
value to each such square� The results of this process are passed on to the
next stage of the GL �per�fragment operations	� which uses the information
to update the appropriate locations in the framebu�er� Figure ��� diagrams
the rasterization process�

A grid square along with its parameters of assigned color� z �depth	�
and texture coordinates is called a fragment� the parameters are collectively
dubbed the fragment�s associated data� A fragment is located by its lower�
left corner� which lies on integer grid coordinates� Rasterization operations
also refer to a fragment�s center� which is o�set by ����� ���	 from its lower�
left corner �and so lies on half�integer coordinates	�

Grid squares need not actually be square in the GL� Rasterization rules
are not a�ected by the actual aspect ratio of the grid squares� Display of
non�square grids� however� will cause rasterized points and line segments to
appear fatter in one direction than the other� We assume that fragments
are square� since it simpli�es antialiasing and texturing�

Several factors a�ect rasterization� Lines and polygons may be stippled�
Points may be given di�ering diameters and line segments di�ering widths�
A point� line segment� or polygon may be antialiased�

�

Version 1.0 - 1 July 1994

��� INVARIANCE ��

FogTexturing

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

From
Primitive
Assembly Fragments

Pixel
Rectangle

Rasterization

Bitmap
RasterizationBitmap

DrawPixels

Figure ���� Rasterization�

��� Invariance

Consider a primitive p� obtained by translating a primitive p through an
o�set �x� y	 in window coordinates� where x and y are integers� As long
as neither p� nor p is clipped� it must be the case that each fragment f �

produced from p� is identical to a corresponding fragment f from p except
that the center of f � is o�set by �x� y	 from the center of f �

��� Antialiasing

Antialiasing of a point� line� or polygon is e�ected in one of two ways de�
pending on whether the GL is in RGBA or color index mode�

In RGBA mode� the R� G� and B values of the rasterized fragment are
left una�ected� but the A value is multiplied by a �oating�point value in
the range �
� �� that describes a fragment�s screen pixel coverage� The
per�fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebu�er�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

In color index mode� the least signi�cant b bits �to the left of the binary
point	 of the color index are used for antialiasing� b � minf
� mg� where
m is the number of bits in the color index portion of the framebu�er� The
antialiasing process sets these b bits based on the fragment�s coverage value�
the bits are set to zero for no coverage and to all ones for complete coverage�

The details of how antialiased fragment coverage values are computed
are di�cult to specify in general� The reason is that high�quality antialias�
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebu�er are displayed� Such de�
tails cannot be addressed within the scope of this document� Further� the
coverage value computed for a fragment of some primitive may depend on
the primitive�s relationship to a number of grid squares neighboring the one
corresponding to the fragment� and not just on the fragment�s grid square�
Another consideration is that accurate calculation of coverage values may
be computationally expensive� consequently we allow a given GL implemen�
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation�

In light of these considerations� we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity� The square is called a fragment square and has
lower left corner �x� y	 and upper right corner �x � �� y � �	� We recognize
that this simple box �lter may not produce the most favorable antialiasing
results� but it provides a simple� well�de�ned model�

A GL implementation may use other methods to perform antialiasing�
subject to the following conditions�

�� If f� and f� are two fragments� and the portion of f� covered by some
primitive is a subset of the corresponding portion of f� covered by
the primitive� then the coverage computed for f� must be less than or
equal to that computed for f��

�� The coverage computation for a fragment f must be local� it may
depend only on f �s relationship to the boundary of the primitive being
rasterized� It may not depend on f �s x and y coordinates�

Another property that is desirable� but not required� is�

�� The sum of the coverage values for all fragments produced by rasteriz�
ing a particular primitive must be constant� independent of any rigid
motions in window coordinates� as long as none of those fragments lies
along window edges�

Version 1.0 - 1 July 1994

�
� POINTS ��

In some implementations� varying degrees of antialiasing quality may be
obtained by providing GL hints �section ���	� allowing a user to make an
image quality versus speed tradeo��

��� Points

The rasterization of points is controlled with

void PointSize� float size 	 �

size speci�es the width or diameter of a point� The default value is ��
� A
value less than or equal to zero results in the error INVALID VALUE�

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT SMOOTH� The default state is for point an�
tialiasing to be disabled�

In the default state� a point is rasterized by truncating its xw and yw
coordinates �recall that the subscripts indicate that these are x and y window
coordinates	 to integers� This �x� y	 address� along with the data associated
with the vertex corresponding to the point� is sent as a single fragment to
the per�fragment stage of the GL�

The e�ect of a point width other than ��
 depends on the state of
point antialiasing� If antialiasing is disabled� the actual width is deter�
mined by rounding the supplied width to the nearest integer� then clamping
it to the implementation�dependent maximum non�antialiased point width�
Though this implementation�dependent value cannot be queried� it must
be no less than the implementation�dependent maximum antialiased point
width� rounded to the nearest integer value� and in any event no less than
�� If rounding the speci�ed width results in the value
� then it is as if the
value were �� If the resulting width is odd� then the point

�x� y	 � �bxwc�
�

�
� bywc �

�

�
	

is computed from the vertex�s xw and yw � and a square grid of the odd width
centered at �x� y	 de�nes the centers of the rasterized fragments �recall that
fragment centers lie at half�integer window coordinate values	� If the width
is even� then the center point is

�x� y	 � �bxw �
�

�
c� byw �

�

�
c	�

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

���
���
���

���
���
���

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure ���� Rasterization of non�antialiased wide points� The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region� The dotted grid lines lie on half�integer coordinates�

Version 1.0 - 1 July 1994

�
� POINTS ��

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure ���� Rasterization of antialiased wide points� The black dot indi�
cates the point to be rasterized� The shaded region has the speci�ed width�
The X marks indicate those fragment centers produced by rasterization� A
fragment	s computed coverage value is based on the portion of the shaded re�
gion that covers the corresponding fragment square� Solid lines lie on integer
coordinates�

the rasterized fragment centers are the half�integer window coordinate values
within the square of the even width centered on �x� y	� See Figure ����

All fragments produced in rasterizing a non�antialiased point are as�
signed the same associated data� which are those of the vertex corresponding
to the point�

If antialiasing is enabled� then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point�s
�xw� yw	 �Figure ���	� The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the correspond�
ing fragment square �but see section ���	� This value is saved and used in
the �nal step of rasterization �section ���
	� The data associated with each
fragment are otherwise the data associated with the point being rasterized�

Not all widths need be supported when point antialiasing is on� but
the width ��
 must be provided� If an unsupported width is requested� the

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

nearest supported width is used instead� The range of supported widths and
the width of evenly�spaced gradations within that range are implementation
dependent� The range and gradations may be obtained using the query
mechanism described in Chapter �� If� for instance� the width range is from

�� to ��
 and the gradation width is
��� then the widths
���
��� � � � � ���� ��

are supported�

����� Point Rasterization State

The state required to control point rasterization consists of the �oating�point
point width and a bit indicating whether or not antialiasing is enabled�

��� Line Segments

A line segment results from a line strip Begin�End object� a line loop� or
a series of separate line segments� Line segment rasterization is controlled
by several variables� Line width� which may be set by calling

void LineWidth� float width 	 �

with an appropriate positive �oating�point width� controls the width of ras�
terized line segments� The default width is ��
� Values less than or equal
to
�
 generate the error INVALID VALUE� Antialiasing is controlled with En

able and Disable using the symbolic constant LINE SMOOTH� Finally� line
segments may be stippled� Stippling is controlled by a GL command that
sets a stipple pattern �see below	�

����� Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
x�major or y�major� x�major line segments have slope in the closed inter�
val ���� ��� all other line segments are y�major �slope is determined by the
segment�s endpoints	� We shall specify rasterization only for x�major seg�
ments except in cases where the modi�cations for y�major segments are not
self�evident�

Ideally� the GL uses a �diamond�exit� rule to determine those fragments
that are produced by rasterizing a line segment� For each fragment f with
center at window coordinates xf and yf � de�ne a diamond�shaped region
that is the intersection of four half�planes�

Rf � Sf� � Sf� � Sf� � Sf�

Version 1.0 - 1 July 1994

��� LINE SEGMENTS ��

��

�����
�����
�����
�����
����������

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
�����

�����
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
����������
�����
�����
�����
�����

Figure ���� Visualization of Bresenham	s algorithm� A portion of a line
segment is shown� A diamond shaped region of height � is placed around each
fragment center� those regions that the line segment exits cause rasterization
to produce corresponding fragments�

where

Sf� � f�x� y	jx� y � xf � yf �
��g

Sf� � f�x� y	jx� y � xf � yf �
��g

Sf� � f�x� y	jx� y � xf � yf �
��g

Sf� � f�x� y	jx� y � xf � yf �
��g

A line segment starting at pa and ending at pb produces those fragments
f for which the segment intersects Rf � except if pb is contained in Rf � See
Figure ��
�

When pa and pb lie on fragment centers� this characterization of frag�
ments reduces to Bresenham�s algorithm with one modi�cation� lines pro�
duced in this description are �half�open�� meaning that the �nal fragment
�corresponding to pb	 is not drawn� This means that when rasterizing a
series of connected line segments� shared endpoints will be produced only
once rather than twice �as would occur with Bresenham�s algorithm	�

Because the initial and �nal conditions of the diamond�exit rule may
be di�cult to implement� other line segment rasterization algorithms are
allowed� subject to the following rules�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

�� The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond�exit rule�

�� The total number of fragments produced by the algorithm may di�er
from that produced by the diamond�exit rule by no more than one�

�� For an x�major line� no two fragments may be produced that lie in the
same window�coordinate column �for a y�major line� no two fragments
may appear in the same row	�

� If two line segments share a common endpoint� and both segments
are either x�major �both left�to�right or both right�to�left	 or y�major
�both bottom�to�top or both top�to�bottom	� then rasterizing both
segments may not produce duplicate fragments� nor may any frag�
ments be omitted so as to interrupt continuity of the connected seg�
ments�

Next we must specify how the data associated with each rasterized frag�
ment are obtained� Let the window coordinates of a produced fragment
center be given by pr � �xd� yd	 and let pa � �xa� ya	 and pb � �xb� yb	� Set

t �
�pr � pa	 � �pb � pa	

kpb � pak�
� ����	

�Note that t �
 at pa and t � � at pb�	 The value of an associated datum
f for the fragment� whether it be R� G� B� or A �in RGBA mode	 or a color
index �in color index mode	� or the s� t� or r texture coordinate �the depth
value� window z� must be found using equation ���� below	� is found as

f �
��� t	fa�wa � tfb�wb

��� t	�a�wa � t�b�wb

����	

where fa and fb are the data associated with the starting and ending end�
points of the segment� respectively� wa and wb are the clip w coordinates of
the starting and ending endpoints of the segments� respectively� �a � �b � �
for all data except texture coordinates� in which case �a � qa and �b � qb
�qa and qb are the homogeneous texture coordinates at the starting and end�
ing endpoints of the segment� results are unde�ned if either of these is less
than or equal to
	� Note that linear interpolation would use

f � ��� t	fa��a � tfb��b� ����	

Version 1.0 - 1 July 1994

��� LINE SEGMENTS ��

The reason that this formula is incorrect �except for the depth value	 is
that it interpolates a datum in window space� which may be distorted by
perspective� What is actually desired is to �nd the corresponding value when
interpolated in eye space� which equation ��� does� A GL implementation
may choose to approximate equation ��� with ���� but this will normally lead
to unacceptable distortion e�ects when interpolating texture coordinates�

����� Other Line Segment Features

We have just described the rasterization of non�antialiased line segments
of width one using the default line stipple of FFFF��� We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters�

Line Stipple

The command

void LineStipple� int factor� ushort pattern 	 �

de�nes a line stipple� pattern is an unsigned short integer� The line stipple is
taken from the lowest order �� bits of pattern� It determines those fragments
that are to be drawn when the line is rasterized� factor is a count that is
used to modify the e�ective line stipple by causing each bit in line stipple to
be used factor times� factor is clamped to the range ��� ����� Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE� When disabled� it is as if the line stipple has its default value�

Line stippling masks certain fragments that are produced by rasteriza�
tion so that they are not sent to the per�fragment stage of the GL� The
masking is achieved using three parameters� the ���bit line stipple p� the
line repeat count r� and an integer stipple counter s� Let

b � bs�rc mod ���

Then a fragment is produced if the bth bit of p is �� and not produced
otherwise� The bits of p are numbered with
 being the least signi�cant and
�� being the most signi�cant� The initial value of s is zero� s is incremented
after production of each fragment of a line segment �fragments are produced
in order� beginning at the starting point and working towards the ending
point	� s is reset to
 whenever a Begin occurs� and before every line

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

segment in a group of independent segments �as speci�ed when Begin is
invoked with LINES	�

If the line segment has been clipped� then the value of s at the beginning
of the line segment is indeterminate�

Wide Lines

The actual width of non�antialiased lines is determined by rounding
the supplied width to the nearest integer� then clamping it to the
implementation�dependent maximum non�antialiased line width� Though
this implementation�dependent value cannot be queried� it must be no
less than the implementation�dependent maximum antialiased line width�
rounded to the nearest integer value� and in any event no less than �� If
rounding the speci�ed width results in the value
� then it is as if the value
were ��

Non�antialiased line segments of width other than one are rasterized
by o�setting them in the minor direction �for an x�major line� the minor
direction is y� and for a y�major line� the minor direction is x	 and replicating
fragments in the minor direction �see Figure ���	� Let w be the width
rounded to the nearest integer �if w �
� then it is as if w � �	� If the line
segment has endpoints given by �x�� y�	 and �x�� y�	 in window coordinates�
the segment with endpoints �x�� y� � �w� �	��	 and �x�� y� � �w� �	��	 is
rasterized� but instead of a single fragment� a column of fragments of height
w �a row of fragments of length w for a y�major segment	 is produced at
each x �y for y�major	 location� The lowest fragment of this column is the
fragment that would be produced by rasterizing the segment of width �
with the modi�ed coordinates� The whole column is not produced if the
stipple bit for the column�s x location is zero� otherwise� the whole column
is produced�

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment� Two of the edges
are parallel to the speci�ed line segment� each is at a distance of one�half
the current width from that segment� one above the segment and one below
it� The other two edges pass through the line endpoints and are perpen�
dicular to the direction of the speci�ed line segment� Coverage values are
computed for each fragment by computing the area of the intersection of

Version 1.0 - 1 July 1994

��� LINE SEGMENTS ��

width = 2 width = 3

Figure ��
� Rasterization of non�antialiased wide lines� x�major line segments
are shown� The heavy line segment is the one speci�ed to be rasterized� the
light segment is the o�set segment used for rasterization� x marks indicate
the fragment centers produced by rasterization�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

Figure ���� The region used in rasterizing and �nding corresponding coverage
values for an antialiased line segment �an x�major line segment is shown��

the rectangle with the fragment square �see Figure ���� see also section ���	�
Equation ��� is used to compute associated data values just as with non�

antialiased lines� equation ��� is used to �nd the value of t for each fragment
whose square is intersected by the line segment�s rectangle� Not all widths
need be supported for line segment antialiasing� but width ��
 antialiased
segments must be provided� As with the point width� a GL implementa�
tion may be queried for the range and number of gradations of available
antialiased line widths�

For purposes of antialiasing� a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment� Each rectangle has
width equal to the current line width and length equal to � pixel �except the
last� which may be shorter	� These rectangles are numbered from
 to n�
starting with the rectangle incident on the starting endpoint of the segment�
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple� above� where �fragment� is replaced
with �rectangle�� Each rectangle so produced is rasterized as if it were an
antialiased polygon� described below �but culling� non�default settings of
PolygonMode� and polygon stippling are not applied	�

Version 1.0 - 1 July 1994

��� POLYGONS ��

����� Line Rasterization State

The state required for line rasterization consists of the �oating�point line
width� a ���bit line stipple� the line stipple repeat count� a bit indicating
whether stippling is enabled or disabled� and a bit indicating whether line
antialiasing is on or o�� In addition� during rasterization� an integer stipple
counter must be maintained to implement line stippling� The initial value
of the line width is ��
� The initial value of the line stipple is �xFFFF �a
stipple of all ones	� The initial value of the line stipple repeat count is one�
The initial state of line stippling is disabled� The initial state of line segment
antialiasing is disabled�

��� Polygons

A polygon results from a polygon Begin�End object� a triangle resulting
from a triangle strip� triangle fan� or series of separate triangles� or a quadri�
lateral arising from a quadrilateral strip� series of separate quadrilaterals� or
a Rect command� Like points and line segments� polygon rasterization is
controlled by several variables� Polygon antialiasing is controlled with En

able and Disable with the symbolic constant POLYGON SMOOTH� The analog
to line segment stippling for polygons is polygon stippling� described below�

��	�� Basic Polygon Rasterization

The �rst step of polygon rasterization is to determine if the polygon is
back facing or front facing� This determination is made by examining the
sign of the area computed by equation ��� of section ������ �including the
possible reversal of this sign as indicated by the last call to FrontFace	� If
this sign is positive� the polygon is frontfacing� otherwise� it is back facing�
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized� The
CullFace mode is set by calling

void CullFace� enum mode 	 �

mode is a symbolic constant� one of FRONT� BACK or FRONT AND BACK� Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE� Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

either culling is disabled or the CullFace mode is FRONT� The initial setting
of the CullFace mode is BACK� Initially� culling is disabled�

The rule for determining which fragments are produced by polygon ras�
terization is called point sampling� The two�dimensional projection obtained
by taking the x and y window coordinates of the polygon�s vertices is formed�
Fragment centers that lie inside of this polygon are produced by rasteriza�
tion� Special treatment is given to a fragment whose center lies on a polygon
boundary edge� In such a case we require that if two polygons lie on either
side of a common edge �with identical endpoints	 on which a fragment cen�
ter lies� then exactly one of the polygons results in the production of the
fragment during rasterization�

As for the data associated with each fragment produced by rasterizing a
polygon� we begin by specifying how these values are produced for fragments
in a triangle� De�ne barycentric coordinates for a triangle� Barycentric
coordinates are a set of three numbers� a� b� and c� each in the range �
� ���
with a � b� c � �� These coordinates uniquely specify any point p within
the triangle or on the triangle�s boundary as

p � apa � bpb � cpc�

where pa� pb� and pc are the vertices of the triangle� a� b� and c can be found
as

a �
A�ppbpc	

A�papbpc	
� b �

A�ppapc	

A�papbpc	
� c �

A�ppapb	

A�papbpc	
�

where A�lmn	 denotes the area in window coordinates of the triangle with
vertices l� m� and n�

Denote a datum at pa� pb� or pc as fa� fb� or fc� respectively� Then the
value f of a datum at a fragment produced by rasterizing a triangle is given
by

f �
afa�wa � bfb�wb � cfc�wc

a�a�wa � b�b�wb � c�c�wc

���
	

where wa� wb and wc are the clip w coordinates of pa� pb� and pc� respectively�
a� b� and c are the barycentric coordinates of the fragment for which the data
are produced� �a � �b � �c � � except for texture s� t� and r coordinates�
for which �a � qa� �b � qb� and �c � qc �if any of qa� qb� or qc are less
than or equal to zero� results are unde�ned	� a� b� and c must correspond
precisely to the exact coordinates of the center of the fragment� Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment�s center�

Version 1.0 - 1 July 1994

��� POLYGONS ��

Just as with line segment rasterization� equation ��
 may be approxi�
mated by

f � afa��a � bfb��b � cfc��c�

this may yield acceptable results for color values �it must be used for depth
values	� but will normally lead to unacceptable distortion e�ects if used for
texture coordinates�

For a polygon with more than three edges� we require only that a convex
combination of the values of the datum at the polygon�s vertices can be used
to obtain the value assigned to each fragment produced by the rasterization
algorithm� That is� it must be the case that at every fragment

f �
nX

i��

aifi

where n is the number of vertices in the polygon� fi is the value of the f at
vertex i� for each i
 � ai � � and

Pn
i�� ai � �� The values of the ai may

di�er from fragment to fragment� but at vertex i� aj �
� j �� i and ai � ��

One algorithm that achieves the required behavior is to triangulate a
polygon �without adding any vertices	 and then treat each triangle individ�
ually as already discussed� A scan�line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor�
izontal span from edge to edge also satis�es the restrictions �in this case�
the numerator and denominator of equation ��
 should be iterated indepen�
dently and a division performed for each fragment	�

��	�� Stippling

Polygon stippling works much the same way as line stippling� masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL� This is the case regardless of the state of polygon
antialiasing� Stippling is controlled with

void PolygonStipple� ubyte pattern�� 	 �

pattern is a pointer to memory into which a �� � �� pattern is packed�
The pattern is unpacked from memory according to the procedure given
in section ����� for DrawPixels� it is as if the height and width passed to
that command were both equal to ��� the type were BITMAP� and the format
were COLOR INDEX� The unpacked values �before any conversion or arithmetic

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

would have been performed	 are bitwise ANDed with � to obtain a stipple
pattern of zeros and ones�

If xw and yw are the window coordinates of a rasterized polygon frag�
ment� then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern �xw mod ��� yw mod ��	 is ��

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE� When disabled� it is as if the stipple
pattern were all ones�

��	�� Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment�s square� A coverage
value is computed at each such fragment� and this value is saved to be applied
as described in section ���
� An associated datum is assigned to a fragment
by integrating the datum�s value over the region of the intersection of the
fragment square with the polygon�s interior and dividing this integrated
value by the area of the intersection� For a fragment square lying entirely
within the polygon� the value of a datum at the fragment�s center may be
used instead of integrating the value across the fragment�

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not� The polygon point sampling rule de�ned in section ������
however� is not enforced for antialiased polygons�

��	�� Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode� enum face� enum mode 	 �

face is one of FRONT� BACK� or FRONT AND BACK� indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons� back facing polygons� or both front and back facing polygons�
respectively� mode is one of the symbolic constants POINT� LINE� or FILL�
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated� for rasterization purposes� just as if they were enclosed within
a Begin�POINT	 and End pair� The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them �see section �����	� LINE causes edges that are tagged as boundary
to be rasterized as line segments� �The line stipple counter is reset at the

Version 1.0 - 1 July 1994

��� PIXEL RECTANGLES ��

beginning of the �rst rasterized edge of the polygon� but not for subsequent
edges�	 FILL is the default mode of polygon rasterization� corresponding to
the description in sections ������ ������ and ������ Note that these modes
a�ect only the �nal rasterization of polygons� in particular� a polygon�s
vertices are lit� and the polygon is clipped and possibly culled before these
modes are applied�

Polygon antialiasing applies only to the FILL state of PolygonMode�
For POINT or LINE� point antialiasing or line segment antialiasing� respec�
tively� apply�

��	�	 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat�
tern� whether stippling is enabled or disabled� the current state of polygon
antialiasing �enabled or disabled	� and the current values of the Polygon

Mode setting for each of front and back facing polygons� The initial stipple
pattern is all ones� initially stippling is disabled� The initial setting of poly�
gon antialiasing is disabled� The initial state for PolygonMode is FILL for
both front and back facing polygons�

��� Pixel Rectangles

Rectangles of color� depth� and certain other values may be converted to
fragments using the DrawPixels command� Some of the parameters and
operations governing the operation of DrawPixels are shared by Read

Pixels �used to obtain pixel values from the framebu�er	 and CopyPixels
�used to copy pixels from one framebu�er location to another	� the discus�
sion of ReadPixels and CopyPixels� however� is deferred until Chapter

after the framebu�er has been discussed in detail� Nevertheless� we note
in this section when parameters and state pertaining to DrawPixels also
pertain to ReadPixels or CopyPixels�

A number of parameters control the encoding of pixels in client mem�
ory �for reading and writing	 and how pixels are processed before being
placed in or after being read from the framebu�er �for reading� writing� and
copying	� These parameters are set with three commands� PixelStore�
PixelTransfer� and PixelMap�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

Parameter Name Type Initial Value Valid Range

UNPACK SWAP BYTES boolean FALSE TRUE�FALSE

UNPACK LSB FIRST boolean FALSE TRUE�FALSE

UNPACK ROW LENGTH integer
 �
��	

UNPACK SKIP ROWS integer
 �
��	

UNPACK SKIP PIXELS integer
 �
��	

UNPACK ALIGNMENT integer
 ����
��

Table ���� PixelStore parameters pertaining to DrawPixels�

����� Pixel Storage Modes

Pixel storage modes a�ect the operation of DrawPixels and ReadPixels
�as well as other commands� see sections ������ ���� and ���	 when one of
these commands is issued� This may di�er from the time that the command
is executed if the command is placed in a display list �see section ��
	� Pixel
storage modes are set with

void PixelStorefifg� enum pname� T param 	 �

pname is a symbolic constant indicating a parameter to be set� and param
is the value to set it to� Table ��� summarizes the pixel storage parameters�
their types� their initial values� and their allowable ranges� Setting a param�
eter to a value outside the given range results in the error INVALID VALUE�

The version of PixelStore that takes a �oating�point value may be
used to set any type of parameter� if the parameter is boolean� then it
is set to FALSE if the passed value is
�
 and TRUE otherwise� while if the
parameter is an integer� then the passed value is rounded to the nearest
integer� The integer version of the command may also be used to set any
type of parameter� if the parameter is boolean� then it is set to FALSE if the
passed value is
 and TRUE otherwise� while if the parameter is a �oating�
point value� then the passed value is converted to �oating�point�

����� Pixel Transfer Modes

Pixel transfer modes a�ect the operation ofDrawPixels� ReadPixels� and
CopyPixels at the time when one of these commands is executed �which

Version 1.0 - 1 July 1994

��� PIXEL RECTANGLES ��

Parameter Name Type Initial Value Valid Range

MAP COLOR boolean FALSE TRUE�FALSE

MAP STENCIL boolean FALSE TRUE�FALSE

INDEX SHIFT integer
 �����	

INDEX OFFSET integer
 �����	

RED SCALE �oat ��
 �����	

GREEN SCALE �oat ��
 �����	

BLUE SCALE �oat ��
 �����	

ALPHA SCALE �oat ��
 �����	

DEPTH SCALE �oat ��
 �����	

RED BIAS �oat
�
 �����	

GREEN BIAS �oat
�
 �����	

BLUE BIAS �oat
�
 �����	

ALPHA BIAS �oat
�
 �����	

DEPTH BIAS �oat
�
 �����	

Table ���� PixelTransfer parameters�

may di�er from the time the command is issued	� Some pixel transfer modes
are set with

void PixelTransferfifg� enum param� T value 	 �

param is a symbolic constant indicating a parameter to be set� and value is
the value to set it to� Table ��� summarizes the pixel transfer parameters
that are set with PixelTransfer� their types� their initial values� and their
allowable ranges� Setting a parameter to a value outside the given range
results in the error INVALID VALUE� The same versions of the command exist
as for PixelStore� and the same rules apply to accepting and converting
passed values to set parameters�

The other pixel transfer modes are the various lookup tables used by
DrawPixels� ReadPixels� and CopyPixels� These are set with

void PixelMapfui us fgv� enum map� sizei size� T val�
ues�� 	 �

map is a symbolic map name� indicating the map to set� size indicates the
size of the map� and values is a pointer to an array of size map values�

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

Map Name Address Value Init� Size Init� Value

PIXEL MAP I TO I color idx color idx �

PIXEL MAP S TO S stencil idx stencil idx �

PIXEL MAP I TO R color idx R �
�

PIXEL MAP I TO G color idx G �
�

PIXEL MAP I TO B color idx B �
�

PIXEL MAP I TO A color idx A �
�

PIXEL MAP R TO R R R �
�

PIXEL MAP G TO G G G �
�

PIXEL MAP B TO B B B �
�

PIXEL MAP A TO A A A �
�

Table ���� PixelMap parameters�

The entries of a table may be speci�ed using one of three types� single�
precision �oating�point� unsigned short integer� or unsigned integer� depend�
ing on which of the three versions of PixelMap is called� A table entry is
converted to the appropriate type when it is speci�ed� An entry giving a
color component value is converted according to Table ��
� An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to �oating�point� An entry giving a stencil index is converted from
single�precision �oating�point to an integer by rounding to nearest� The var�
ious tables and their initial sizes and entries are summarized in Table ����
A table that takes an index as an address must have size � �n or the error
INVALID VALUE results� The maximum allowable size of each table is imple�
mentation dependent� but must be at least �� �a single maximum applies
to all tables	� The error INVALID VALUE is generated if a size larger than the
implemented maximum� or less than zero� is given to PixelMap�

����� Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
Figure ���� We describe the stages of this process in the order in which they
occur�

Pixels are drawn using

void DrawPixels� sizei width� sizei height� enum format�

Version 1.0 - 1 July 1994

��� PIXEL RECTANGLES ��

byte short int float
Data Stream

(index or component)

unpack
convert
to [0,1]

RGBA

Index

convert
L−>RGBA

scale
bias

RGBA−>RGBA
lookup

shift
offset

index−>RGBA
lookup

index−>index
lookup

RGBA

Index

Pixel
Data
Out

Pixel
Storage
Modes

Pixel
Transfer
Modes

(stencil,
colorindex)

Z

L, Z

clamp
to

[0,1]

mask
to

[0.0,2n−1]

Figure ���� Operation ofDrawPixels� The parameters controlling the stages
above the dotted line are set with PixelStore while those controlling the
stages below the line are set with PixelTransfer or PixelMap�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

type Corresponding Type

UNSIGNED BYTE unsigned ��bit integer

BYTE signed ��bit integer

BITMAP single bits in unsigned ��bit integers

UNSIGNED SHORT unsigned ���bit integer

SHORT signed ���bit integer

UNSIGNED INT unsigned ���bit integer

INT ���bit integer

FLOAT single�precision �oating�point

Table ��
� DrawPixels and ReadPixels types�

enum type� void �data 	 �

format is a symbolic constant indicating what the values in memory repre�
sent� width and height are the width and height� respectively� of the pixel
rectangle to be drawn� data is a pointer to the data to be drawn� These data
are signed or unsigned bytes� ���bit integers� or ���bit integers� or single�
precision �oating�point values� depending on the value of type� The possible
values of type and the types they indicate are given in Table ��
� If the GL
is in color index mode and format is not one of COLOR INDEX� STENCIL INDEX�
or DEPTH COMPONENT� then the error INVALID OPERATION occurs�

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes�
���bit integers� ���bit integers� or single�precision �oating�point elements�
These elements are grouped into sets of one� two� three� or four values�
depending on the format� to form a group� Table ��� summarizes the format
of groups obtained from memory� It also indicates those formats that yield
indices and those that yield components�

The byte�ordering of the bytes that constitute each element in memory
is whatever is native to the GL client if UNPACK SWAP BYTES is FALSE� If it is
TRUE� then byte�ordering is reversed for each element� In this case� there
is no e�ect on a one�byte element� but the constituent bytes of a two�byte
or four�byte element are reversed when those bytes are read to form the
element� If the four bytes making up a four�byte element are stored in order

Version 1.0 - 1 July 1994

��� PIXEL RECTANGLES ��

Name Type Elements Target Bu�er

COLOR INDEX Index Color Index Color

STENCIL INDEX Index Stencil value Stencil

DEPTH COMPONENT Component Depth value Depth

RED Component R Color

GREEN Component G Color

BLUE Component B Color

ALPHA Component A Color

RGB Components R� G� B Color

RGBA Components R� G� B� A Color

LUMINANCE Component Luminance value Color

LUMINANCE ALPHA Components Luminance value� A Color

Table ���� DrawPixels and ReadPixels formats� The third column gives
a description of and the number and order of elements in a group�

in memory as b�� b�� b�� and b�� then the reverse order is b�� b�� b�� and b��
Calling DrawPixels with a type of BITMAP is a special case in which

the data are a series of unsigned bytes� In this case� the only allowable
formats are COLOR INDEX and STENCIL INDEX� �Other formats generate the
error INVALID ENUM�	 Each byte is taken as a series of eight bits� each of which
is a single element� The single�bit elements within each byte are ordered from
most signi�cant to least signi�cant if the value of UNPACK LSB FIRST is FALSE�
otherwise� the ordering is from least signi�cant to most signi�cant�

The groups in memory are treated as being arranged in a rectangle� This
rectangle consists of a series of rows� with the �rst element of the �rst group
of the �rst row pointed to by the pointer passed to DrawPixels� If the
value of UNPACK ROW LENGTH is not positive� then the number of groups in a
row is width� otherwise the number of groups is UNPACK ROW LENGTH� If the
�rst element of a row is at location p in memory� then the location of the
�rst element of the next row is obtained by skipping

k �

�
nl s � a�
a�s dsnl�ae s � a

����	

elements� where n is the number of elements in a group� l is the number of
groups in the row� a is the value of UNPACK ALIGNMENT� and s is the size� in

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure ��
� Selecting a subimage from an image� The indicated param�
eter names are pre�xed by UNPACK for DrawPixels and by PACK for
ReadPixels�

bytes� of an element� In the case of ��bit elements� the location of the next
row is obtained by skipping

k � �a

�
nl

�a

	
����	

elements� The allowable values of UNPACK ALIGNMENT are �� ��
� or �� other
values result in the error INVALID VALUE�

There is a mechanism for selecting a sub�rectangle of groups from a
larger containing rectangle� This mechanism relies on three integer param�
eters� UNPACK ROW LENGTH� UNPACK SKIP ROWS� and UNPACK SKIP PIXELS� Before
obtaining the �rst group from memory� the pointer supplied toDrawPixels
is e�ectively advanced by �UNPACK SKIP PIXELS	n� �UNPACK SKIP ROWS	k ele�
ments� Then width groups are obtained from contiguous elements in memory
�without advancing the pointer	� after which the pointer is advanced by k
elements� height sets of width groups of values are obtained this way� See
Figure ����

Conversion to �oating
point

This step applies only to groups of components� It is not performed on
indices� Each element in a group is converted to a �oating�point value

Version 1.0 - 1 July 1994

��� PIXEL RECTANGLES ��

according to the appropriate formula in Table ��
 �section ����	 for color
components�

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA� If
the format is LUMINANCE� then each group of one element is converted to a
group of R� G� and B �three	 elements by copying the original single element
into each of the three new elements� If the format is LUMINANCE ALPHA� then
each group of two elements is converted to a group of R� G� B� and A �four	
elements by copying the �rst original element into each of the �rst three
new elements and copying the second original element to the A �fourth	
new element�

Final Expansion to RGBA

This step is performed only for non�depth component groups� Each group
is converted to a group of
 elements as follows� if a group does not contain
an A element� then A is added and set to ��
� If any of R� G� or B is missing
from the group� each missing element is added and assigned a value of
�
�

Arithmetic on Components

This step applies only to component groups� Each component is multi�
plied by an appropriate signed scale factor� RED SCALE for an R compo�
nent� GREEN SCALE for a G component� BLUE SCALE for a B component� and
ALPHA SCALE for an A component� or DEPTH SCALE for a depth component�
Then the result is added to the the appropriate signed bias� RED BIAS�
GREEN BIAS� BLUE BIAS� ALPHA BIAS� or DEPTH BIAS�

Arithmetic on Indices

This step applies only to indices� If the index is a �oating�point value� it is
converted to �xed�point� with an unspeci�ed number of bits to the right of
the binary point� Indices that are already integers remain so� any fraction
bits in the resulting �xed�point value are zero�

The �xed�point index is then shifted by jINDEX SHIFTj bits� left if
INDEX SHIFT �
 and right otherwise� In either case the shift is zero��lled�
Then� the signed integer o�set INDEX OFFSET is added to the index�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

RGBA to RGBA Lookup

This step applies only to RGBA component groups� and is skipped if
MAP COLOR is FALSE� First� each component is clamped to the range �
� ���
There is a table associated with each of the R� G� B� and A component
elements� PIXEL MAP R TO R for R� PIXEL MAP G TO G for G� PIXEL MAP B TO B

for B� and PIXEL MAP A TO A for A� Each element is multiplied by an integer
one less than the size of the corresponding table� and� for each element� an
address is found by rounding this value to the nearest integer� For each ele�
ment� the addressed value in the corresponding table replaces the element�

Index Lookup

This step applies only to indices� If the GL is in RGBA mode� then the
integer part of the index is used to reference
 tables of color components�
PIXEL MAP I TO R� PIXEL MAP I TO G� PIXEL MAP I TO B� and PIXEL MAP I TO A�
Each of these tables must have �n entries for some integer value of n �n may
be di�erent for each table	� For each table� the index is �rst rounded to the
nearest integer� the result is ANDed with �n � �� and the resulting value
used as an address into the table� The indexed value becomes an R� G� B�
or A value� as appropriate� The group of four elements so obtained replaces
the index� changing the group�s type to �component��

If the GL is in color index mode and if MAP COLOR is TRUE� then the index is
looked up in the PIXEL MAP I TO I table �otherwise� the index is not looked
up	� Again� the table must have �n entries for some integer n� and the
integer part of the index is ANDed with �n � �� producing a value� This
value addresses the table� and the value in the table replaces the index�
The �oating�point table value is �rst rounded to a �xed�point value with
unspeci�ed precision�

Finally� if format is STENCIL INDEX and if MAP STENCIL is TRUE� then the
index is looked up as described in the preceding paragraph� but using the
PIXEL MAP S TO S table�

Final Conversion

For a color index� �nal conversion consists of masking the bits of the index
to the left of the binary point by �n� �� where n is the number of bits in an
index bu�er� For RGBA components� each element is clamped to �
� ��� The
resulting values are converted to �xed�point according to the rules given in
section ������ �Final Color Processing	�

Version 1.0 - 1 July 1994

��� BITMAPS ��

For a depth component� an element is �rst clamped to �
� �� and then
converted to �xed�point as if it were a window z value �see section ������
Controlling the Viewport	�

Stencil indices are masked by �n � �� where n is the number of bits in
the stencil bu�er�

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom� float zx� float zy 	 �

Let �xrp� yrp	 be the current raster position �section ����	� �If the current
raster position is invalid� then DrawPixels is ignored�	 If a particular
group �index or components	 is the nth in a row and belongs to the mth
row� consider the region in window coordinates bounded by the rectangle
with corners

�xrp � zxn� yrp � zym	 and �xrp � zx�n� �	� yrp � zy�m� �		

�either zx or zy may be negative	� Any fragments whose centers lie inside
of this rectangle �or on its bottom or left boundaries	 are produced in cor�
respondence with this particular group of elements�

A fragment arising from a group consisting of color data takes on the
color index or color components of the group� the depth and texture coordi�
nates are taken from the current raster position�s associated data� A frag�
ment arising from a depth component takes the component�s depth value�
the color and texture coordinates are given by those associated with the
current raster position� Groups arising from DrawPixels with a format of
STENCIL INDEX are treated specially and are described in section
�����

��
 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of
fragments to be produced� Each of these fragments has the same associated
data� These data are those associated with the current raster position�

Bitmaps are sent using

void Bitmap� sizei w� sizei h� float xbo� float ybo�
float xbi� float ybi� ubyte data�� 	 �

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

���
���
���

���
���
������

���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
������

���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

���
���
������
���
���

���
���
������

���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� ���

���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure ���� A bitmap and its associated parameters� xbi and ybi are not
shown�

w and h comprise the integer width and height of the rectangular bitmap�
respectively� �xbo� ybo	 gives the �oating�point x and y values of the bitmap�s
origin� �xbi� ybi	 gives the �oating�point x and y increments that are added
to the raster position after the bitmap is rasterized� data is a pointer to a
bitmap�

Like a polygon pattern� a bitmap is unpacked from memory according to
the procedure given in section ����� forDrawPixels� it is as if the width and
height passed to that command were equal to w and h� respectively� the type
were BITMAP� and the format were COLOR INDEX� The unpacked values �before
any conversion or arithmetic would have been performed	 are bitwise ANDed
with � to obtain a stipple pattern of zeros and ones� See Figure ����

A bitmap sent using Bitmap is rasterized as follows� First� if the cur�
rent raster position is invalid �the valid bit is reset	� the bitmap is ignored�
Otherwise� a rectangular array of fragments is constructed� with lower left
corner at

�xll� yll	 � �bxrp � xboc� byrp � yboc	

and upper right corner at �xll � w� yll � h	 where w and h are the width

Version 1.0 - 1 July 1994

��� TEXTURING ��

and height of the bitmap� respectively� Fragments in the array are produced
if the corresponding bit in the bitmap is � and not produced otherwise�
The associated data for each fragment are those associated with the current
raster position� Once the fragments have been produced� the current raster
position is updated�

�xrp� yrp	� �xrp � xbi� yrp � ybi	�

The z and w values of the current raster position remain unchanged�

��� Texturing

Texturing maps a portion of a speci�ed image onto each primitive for which
texturing is enabled� This mapping is accomplished by using the color of an
image at the location indicated by a fragment�s �s� t	 coordinates to modify
the fragment�s RGBA color �r is currently ignored	� Texturing is speci�ed
only for RGBA mode� its use in color index mode is unde�ned�

The GL provides a means to specify the details of how texturing of a
primitive is e�ected� These details include speci�cation of the image to be
texture mapped� the means by which the image is �ltered when applied
to the primitive� and the function that determines what RGBA value is
produced given a fragment color and an image value�

The command

void TexImage�D� enum target� int level� int compo�
nents� sizei width� sizei height� int border� enum format�
enum type� void �data 	 �

is used to specify a texture image� Currently� target must be TEXTURE �D�
The arguments width� height� format� type� and data correspond precisely to
the corresponding arguments to DrawPixels �refer to section �����	� they
specify the image�s width and height� a format of the image data� the type of
those data� and a pointer to the image data in memory� The image is taken
from memory exactly as if these arguments were passed to DrawPixels�
but the process stops just before �nal conversion� Each R� G� B� and A
value so extracted is clamped to �
� ��� �The formats STENCIL INDEX and
DEPTH COMPONENT are not allowed�	 Components are selected from the R�
G� B� and A values to obtain a texture with components components �the
signi�cance of the number of components is described below	� Table ���
summarizes the mapping of R� G� B� and A values to texture components�

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

Components RGBA Values Texture Components

� R L

� R� A L� A

� R� G� B C

 R� G� B� A C� A

Table ���� Correspondence of texture components to extracted R� G� B� and
A values� See section ����� for a description of the texture components L�
A� and C�

Specifying a number of components other than �� �� �� or
 generates the
error INVALID VALUE�

The image itself �pointed to by data	 is a sequence of groups of values�
The �rst group is the lower left corner of the texture image� Subsequent
groups �ll out rows of width width from left to right� height rows are stacked
from bottom to top�

The level argument to TexImage�D is an integer level�of�detail number�
Levels of detail are discussed below� underMipmapping� The main texture
image has a level of detail number of
� If a level�of�detail less than zero or
greater than the base � logarithm of the maximum texture width or height
�see below	 is speci�ed� the error INVALID VALUE is generated�

The border argument to TexImage�D is a border width� The signi��
cance of borders is described below� The border width a�ects the required
dimensions of the texture image� it must be the case that width � �n � �b
and height � �m � �b� where b is the �non�negative	 border width� If width
and height do not satisfy these relationships� then the error INVALID VALUE is
generated� Currently� if b is not either
 or �� then the error INVALID VALUE

is generated� The maximum allowable width or height of an image is imple�
mentation dependent� but must be at least �
 �or �
 � �b with a border of
width b	� An excessive width or height� or a width or height less than zero�
generates the INVALID VALUE error�

Another command�

void TexImage�D� enum target� int level� int compo�
nents� sizei width� int border� enum format� enum type�
void �data 	 �

is used to specify one�dimensional texture images� Currently� target must be

Version 1.0 - 1 July 1994

��� TEXTURING ��

the texture target TEXTURE �D� For the purposes of decoding the texture im�
age� TexImage�D is equivalent to calling TexImage�D with correspond�
ing arguments and a height argument of �� except that the height of the
image is always �� regardless of the value of border� It must be the case that
width � �n � �b for some integer n where b is the value of border� or the
error INVALID VALUE is generated�

An image with zero height or width �or zero width� for TexImage�D	
indicates the null texture� If the null texture is speci�ed for level�of�detail
zero� it is as if texturing were disabled�

The image indicated to the GL by the image pointer is decoded and
copied into the GL�s internal memory� This copying e�ectively places the
decoded image inside a border of the maximum allowable width �currently
�	 whether or not a border has been speci�ed �see Figure ���
	� If no
border or a border smaller than the maximum allowable width has been
speci�ed� then the image is still stored as if it were surrounded by a border
of the maximum possible width� Any excess border �which surrounds the
speci�ed image� including any border	 is assigned unspeci�ed values� A
one�dimensional texture has a border only at its left and right ends�

We shall refer to the �possibly border augmented	 decoded image as the
texture array� A two�dimensional texture array has width �n��b and height
�m��b� where b is the maximum allowable border width� a one�dimensional
texture array has width �n � �b and height ��

An element �i� j	 of the texture array is called a texel �for a ��dimensional
texture� j is irrelevant	� The texture value used in texturing a fragment is
determined by that fragment�s associated �s� t	 coordinates� but may not
correspond to any actual texel� See Figure ���
�

Various parameters control how the texture array is treated when applied
to a fragment� Each parameter is set by calling

void TexParameterfifg� enum target� enum pname�
T param 	 �

void TexParameterfifgv� enum target� enum pname�
T params 	 �

target is the target� either TEXTURE �D or TEXTURE �D� pname is a symbolic
constant indicating the parameter to be set� the possible constants and cor�
responding parameters are summarized in Table ���� In the �rst form of the
command� param is a value to which to set a single�valued parameter� in the
second form of the command� params is an array of parameters whose type
depends on the parameter being set� If the values for TEXTURE BORDER COLOR

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure ����� A texture image and the coordinates used to access it� This is a
two�dimensional texture with n � � and m � �� A one�dimensional texture
would consist of a single horizontal strip� � and �� values used in blending
adjacent texels to obtain a texture value� are also shown�

Version 1.0 - 1 July 1994

��� TEXTURING ��

Name Type Legal Values

TEXTURE WRAP S integer CLAMP� REPEAT

TEXTURE WRAP T integer CLAMP� REPEAT

TEXTURE MIN FILTER integer NEAREST� LINEAR�
NEAREST MIPMAP NEAREST�
NEAREST MIPMAP LINEAR�
LINEAR MIPMAP NEAREST�
LINEAR MIPMAP LINEAR

TEXTURE MAG FILTER integer NEAREST� LINEAR

TEXTURE BORDER COLOR
 �oats any
 values in �
� ��

Table ���� Texture parameters and their values�

are speci�ed as integers� the conversion for signed integers from Table ��
 is
applied to convert the values to �oating�point� Each of the four values set
by TEXTURE BORDER COLOR is clamped to lie in �
� ���

Texture Wrap Modes

If TEXTURE WRAP S or TEXTURE WRAP T is set to REPEAT� then the GL ignores
the integer part of s or t coordinates� respectively� using only the fractional
part� �For a number r� the fractional part is r � brc� regardless of the sign
of r� recall that the �oor function truncates towards ���	 CLAMP causes s
or t coordinates to be clamped to the range �
� ��� The initial state is for
both s and t behavior to be that given by REPEAT�

����� Texture Mini�cation

Applying a texture to a primitive implies a mapping from texture image
space to framebu�er image space� In general� this mapping involves a recon�
struction of the sampled texture image� followed by a homogeneous warping
implied by the mapping to framebu�er space� then a �ltering� followed ��
nally by a resampling of the �ltered� warped� reconstructed image before
applying it to a fragment� In the GL this mapping is approximated by one
of two simple �ltering schemes� One of these schemes is selected based on
whether the mapping from texture space to framebu�er space is deemed to
magnify or minify the texture image� The choice is governed by a scale fac�

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

tor ��x� y	 and 	�x� y	
 log����x� y	�� if 	�x� y	 is less than or equal to some
constant �the selection of the constant is described below in section �����	
the texture is said to be magni�ed� if it is greater� the texture is mini�ed� 	
is called the level of detail�

Let s�x� y	 be the function that associates an s texture coordinate with
each set of window coordinates �x� y	 that lie within a primitive� de�ne
t�x� y	 analogously� Let u�x� y	 � �ns�x� y	 and v�x� y	 � �mt�x� y	 �for a
one�dimensional texture� de�ne v�x� y	

	� For a polygon� � is given at a
fragment with window coordinates �x� y	 by

� � max

��
�
s

u

x

��
�

v

x

��
�

s

u

y

��
�

v

y

���

� ����	

where
u�
x indicates the derivative of u with respect to window x� and
similarly for the other derivatives� For a line� the formula is

� �

s

u

x
�x�

u

y
�y

��
�

v

x
�x�

v

y
�y

���
l� ����	

where �x � x� � x� and �y � y� � y� with �x�� y�	 and �x�� y�	 being the
segment�s window coordinate endpoints and l �

p
�x� ��y�� For a point�

pixel rectangle� or bitmap� �
 ��

While it is generally agreed that equations ��� and ��� give the best
results when texturing� they are often impractical to implement� Therefore�
an implementation may approximate the ideal � with a function f�x� y	
subject to these conditions�

�� f�x� y	 is continuous and monotonically increasing in each of j
u�
xj�
j
u�
yj� j
v�
xj� and j
v�
yj�

�� Let

mu � max

�����
u
x
���� �
����
u
y

����
�

and mv � max

�����
v
x
���� �
����
v
y

����
�
�

Then maxfmu� mvg � f�x� y	 � mu �mv �

When 	 indicates mini�cation� the value assigned to TEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected� When
TEXTURE MIN FILTER is NEAREST� the texel nearest �in Manhattan distance	 to

Version 1.0 - 1 July 1994

��� TEXTURING ��

that speci�ed by �s� t	 is obtained� This means the texel at location �i� j	
becomes the texture value� with i given by

i �

�
buc� s � ��
�n � �� s � ��

����	

�Recall that if TEXTURE WRAP S is REPEAT� then
 � s � ��	 Similarly� j is
found as

j �

�
bvc� t � ��
�m � �� t � ��

����
	

For a one�dimensional texture� j is irrelevant� the texel at location i becomes
the texture value�

When TEXTURE MIN FILTER is LINEAR� a �� � square of texels is selected�
This square is obtained by �rst computing

i� �

�
bu� ���c mod �n� TEXTURE WRAP S is REPEAT�
bu� ���c� TEXTURE WRAP S is CLAMP

and

j� �

�
bv � ���c mod �m� TEXTURE WRAP T is REPEAT

bv � ���c� TEXTURE WRAP T is CLAMP�

Then

i� �

�
�i� � �	 mod �n� TEXTURE WRAP S is REPEAT�

i� � �� TEXTURE WRAP S is CLAMP

and

j� �

�
�j� � �	 mod �m� TEXTURE WRAP T is REPEAT�
j� � �� TEXTURE WRAP T is CLAMP�

Let
� � frac�u� ���	 and � � frac�v � ���	

where frac�x	 denotes the fractional part of x� Let �ij be the texel at location
�i� j	 in the texture image� Then the texture value� � is found as

� � ��� �	��� �	�i�j� � ���� �	�i�j� � ��� �	��i�j� � ���i�j� �����	

for a two�dimensional texture� For a one�dimensional texture�

� � ��� �	�i� � ��i�

where �i indicates the texel at location i in the one�dimensional texture� If
any of the selected �ij �or �i	 in the above equations refer to a border texel
with unspeci�ed value� then the border color given by the current setting of
TEXTURE BORDER COLOR is used instead of the unspeci�ed value or values�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST� NEAREST MIPMAP LINEAR�
LINEAR MIPMAP NEAREST� and LINEAR MIPMAP LINEAR each require the use of a
mipmap� A mipmap is an ordered set of arrays representing the same image�
each array has a resolution lower than the previous one� If the texture has
dimensions �n � �m� then there are maxfn�mg � � mipmap arrays� The
�rst array is the original texture with dimensions �n� �m� Each subsequent
array has dimensions ��k��
� ��l��
 where �k � �l are the dimensions of the
previous array� This is the case as long as both k �
 and l �
� Once either
k �
 or l �
� each subsequent array has dimension �� ��l��
 or ��k��
� ��
respectively� until the last array is reached with dimension �� ��

Each array in a mipmap is transmitted to the GL using TexImage�D
or TexImage�D� the array being set is indicated with the level�of�detail
argument� Level�of�detail numbers proceed from
 for the original texture
array through p � maxfn�mg with each unit increase indicating an array of
half the dimensions of the previous one as already described� If texturing is
enabled �and TEXTURE MIN FILTER is one that requires a mipmap	 at the time
a primitive is rasterized and if the set of arrays
 through p is incomplete�
based on the dimensions of array
� then it is as if texture mapping were
disabled� The set of arrays
 through p is incomplete if the numbers of
components in each mipmap array are not the same� or if the border widths
of the mipmap arrays are not the same� or if the dimensions of the mipmap
arrays do not follow the sequence described above� Arrays indexed greater
than p are insigni�cant�

The mipmap is used in conjunction with the level of detail to approx�
imate the application of an appropriately �ltered texture to a fragment�
Let p � maxfn�mg and let c be the value of 	 at which the transition
from mini�cation to magni�cation occurs �since this discussion pertains to
mini�cation� we are concerned only with values of 	 where 	 � c	� For
NEAREST MIPMAP NEAREST� if c � 	 �
�� then the mipmap array with level�
of�detail of
 is selected� Otherwise� the dth mipmap array is selected when
d� �

� � 	 � d� �
� as long as � � d � p� If 	 � p� �

� � then the pth mipmap
array is selected� The rules for NEAREST are then applied to the selected
array�

The same mipmap array selection rules apply for LINEAR MIPMAP NEAREST

as for NEAREST MIPMAP NEAREST� but the rules for LINEAR are applied to the
selected array�

For NEAREST MIPMAP LINEAR� the level d�� and the level d mipmap arrays

Version 1.0 - 1 July 1994

��� TEXTURING ��

are selected� where d�� � 	 � d� unless 	 � p� in which case the pth mipmap
array is used for both arrays� The rules for NEAREST are then applied to each
of these arrays� yielding two corresponding texture values �d�� and �d� The
�nal texture value is then found as

� � ��� frac�log���	�	�d�� � frac�log���	��d�

LINEAR MIPMAP LINEAR has the same e�ect as NEAREST MIPMAP LINEAR except
that the rules for LINEAR are applied for each of the two mipmap arrays to
generate �d�� and �d�

����� Texture Magni�cation

When 	 indicates magni�cation� the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained� There are two possible val�
ues for TEXTURE MAG FILTER� NEAREST and LINEAR� NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER �equation ��� and ���
 are used	� LINEAR be�
haves exactly as LINEAR for TEXTURE MIN FILTER �equation ���� is used	� The
level�of�detail
 texture array is always used for magni�cation�

Finally� there is the choice of c� the mini�cation vs� magni�cation switch�
over point� If the magni�cation �lter is given by LINEAR and the mini�cation
�lter is given by NEAREST MIPMAP NEAREST or LINEAR MIPMAP NEAREST� then c �

��� This is done to ensure that a mini�ed texture does not appear �sharper�
than a magni�ed texture� Otherwise c �
�

The state necessary for texture can be divided into two categories�
First� there are the two sets of mipmap arrays �one�dimensional and two�
dimensional	 and their number� Each array has associated with it a width
and height �two�dimensional only	� a border width� and a four�valued in�
teger describing the number of components in the image� Each initial
texture array is null �zero width and height� zero border width� � com�
ponent	� Next� there are the two sets of texture properties� each consists
of the selected mini�cation and magni�cation �lters� the wrap modes for
s and t� and the TEXTURE BORDER COLOR� In the initial state� the value as�
signed to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR� and the value for
TEXTURE MAG FILTER is LINEAR� Both s and t wrap modes are set to REPEAT�
TEXTURE BORDER COLOR is �
�
�
�
	�

����� Texture Environments and Texture Functions

The command

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

void TexEnvfifg� enum target� enum pname� T param 	 �
void TexEnvfifgv� enum target� enum pname� T params 	 �

sets parameters of the texture environment that speci�es how texture values
are interpreted when texturing a fragment� targetmust currently be the sym�
bolic constant TEXTURE ENV� pname is a symbolic constant indicating the pa�
rameter to be set� In the �rst form of the command� param is a value to which
to set a single�valued parameter� in the second form� params is a pointer to
an array of parameters� either a single symbolic constant or a value or group
of values to which the parameter should be set� The possible environment
parameters are TEXTURE ENV MODE and TEXTURE ENV COLOR� TEXTURE ENV MODE

may be set to one of MODULATE� DECAL� or BLEND� TEXTURE ENV COLOR is set to
an RGBA color by providing four single�precision �oating�point values in
the range �
� �� �values outside this range are clamped to it	� If integers are
provided for TEXTURE ENV COLOR� then they are converted to �oating�point as
speci�ed in Table ��
 for signed integers�

The value of TEXTURE ENV MODE speci�es a texture function� The result
of this function depends on the fragment and the texture array value� The
precise form of the function depends on the number of components of the
texture arrays that were last speci�ed� In the following table� C is a triple
of color values comprising each of R� G� and B� while A �A	 is treated
separately� R� G� B� and A values� after being obtained from a supplied
texture image� are in the range �
� ��� The subscript f indicates a value or
values pertaining to the incoming fragment� t indicates a texture value� and
v indicates the color computed by the texture function� For a one component
image� Lt indicates that single component� For a two component image� Lt

is the �rst component� and At is the second� A three component image
has only a color value Ct� while a four component one has a color value Ct

and and alpha value At� The functions for the various combinations are
summarized in Table ����

The state required for the current texture environment consists of the
three�valued integer indicating the texture function and four �oating�point
TEXTURE ENV COLOR values� In the initial state� the texture function is given
by MODULATE and TEXTURE ENV COLOR is �
�
�
�
	�

����� Texture Application

Texturing is enabled or disabled using the generic Enable andDisable com�
mands� respectively� with the symbolic constant TEXTURE �D or TEXTURE �D to

Version 1.0 - 1 July 1994

��� TEXTURING ��

Texture Functions

cpts MODULATE DECAL BLEND

� Cv � LtCf unde�ned Cv � ��� Lt	Cf � LtCc

Av � Af Av � Af

� Cv � LtCf unde�ned Cv � ��� Lt	Cf � LtCc

Av � AtAf Av � AtAf

� Cv � CtCf Cv � Ct unde�ned
Av � Af Av � Af

 Cv � CtCf Cv � ��� At	Cf � AtCt unde�ned
Av � AtAf Av � Af

Table ���� Texture functions� Multiplication of a color triple by a scalar
means multiplying each of R� G� and B by the scalar� multiplying two color
triples means multiplying each component of the second by the correspond�
ing component of the �rst� Cc represents the red� green� and blue values
assigned to TEXTURE ENV COLOR� Cf and Cv represent the red� green� and blue
components of the fragment color prior to and after texture application� Af

and Av represent the alpha component of the fragment prior to and after
texture application�

Version 1.0 - 1 July 1994

�
 CHAPTER
� RASTERIZATION

enable the one�dimensional or two�dimensional texture� respectively� If both
one� and two�dimensional textures are enabled� the two�dimensional texture
is used� If all texturing is disabled� a rasterized fragment is passed on unal�
tered to the next stage of the GL �although its texture coordinates may be
discarded	� Otherwise� a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension�
ality using the rules given in sections ����� and ������ This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment� The result of this
function replaces the incoming fragment�s R� G� B� and A values� These
are the color values passed to subsequent operations� Other data associated
with the incoming fragment remain unchanged� except that the texture co�
ordinates may be discarded�

The required state is two bits indicating whether each of one� or two�
dimensional texturing is enabled or disabled� In the initial state� all textur�
ing is disabled�

��
 Fog

If enabled� fog blends a fog color with a rasterized fragment�s post�texturing
color using a blending factor f � Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG�

This factor f is computed according to one of three equations�

f � exp��d � z	� �����	

f � exp���d � z	�	� or �����	

f �
e � z

e � s
����
	

�z is the eye�coordinate distance from the eye� �
�
�
� �	 in eye coordinates�
to the fragment center	� The equation� along with either d or e and s� is
speci�ed with

void Fogfifg� enum pname� T param 	 �
void Fogfifgv� enum pname� T params 	 �

If pname is FOG MODE� then parammust be� or paramsmust point to an integer
that is one of the symbolic constants EXP� EXP�� or LINEAR� in which case
equation ����� ����� or ���
� respectively� is selected for the fog calculation �if�

Version 1.0 - 1 July 1994

��� FOG ��

when ���
 is selected� e � s� results are unde�ned	� If pname is FOG DENSITY�
FOG START� or FOG END� then param is or params points to a value that is
d� s� or e� respectively� If d� s� or e is speci�ed less than zero� the error
INVALID VALUE results�

An implementation may choose to approximate the eye�coordinate dis�
tance from the eye to each fragment center by jzej� Further� f need not
be computed at each fragment� but may be computed at each vertex and
interpolated as other data are�

No matter which equation and approximation is used to compute f � the
result is clamped to �
� �� to obtain the �nal f �

f is used di�erently depending on whether the GL is in RGBA or color
index mode� In RGBA mode� if Cr represents a rasterized fragment�s R� G�
or B value� then the corresponding value produced by fog is

C � fCr � ��� f	Cf �

�The rasterized fragment�s A value is not changed by fog blending�	 The R�
G� B� and A values of Cf are speci�ed by calling Fog with pname equal to
FOG COLOR� in this case params points to four values comprising Cf � If these
are not �oating�point values� then they are converted to �oating�point using
the conversion given in Table ��
 for signed integers� Each component of Cf

is clamped to �
� �� when speci�ed� If if is a color index� then a single value
speci�es if � Its integer part is masked with �n � �� where n is the number
of bits in a color index framebu�er�

In color index mode� the formula for fog blending is

I � ir � ��� f	if

where ir is the rasterized fragment�s color index and if is a single�precision
�oating�point value� �� � f	if is rounded to the nearest �xed�point value
with the same number of bits to the right of the binary point as ir� In this
case� if is set by calling Fog with pname set to FOG INDEX and param being
or params pointing to the single �oating�point value that is if �

The state required for fog consists of a three valued integer to select the
fog equation� three �oating�point values d� e� and s� an RGBA fog color and
a fog color index� and a single bit to indicate whether or not fog is enabled�
In the initial state� fog is disabled� FOG MODE is EXP� d � ��
� e � ��
� and
s �
�
� Cf � �
�
�
�
	 and if �
�

Version 1.0 - 1 July 1994

�� CHAPTER
� RASTERIZATION

���� Antialiasing Application

Finally� if antialiasing is enabled for the primitive from which a rasterized
fragment was produced� then the computed coverage value is applied to the
fragment� In RGBA mode� the value is multiplied by the fragment�s alpha
�A	 value to yield a �nal alpha value� In color index mode� the value is used
to set the low order bits of the color index value as described in section ����

Version 1.0 - 1 July 1994

Chapter �

Per�Fragment Operations

and the Framebu�er

The framebu�er consists of a set of pixels arranged as a two�dimensional
array� The height and width of this array may vary from one GL imple�
mentation to another� For purposes of this discussion� each pixel in the
framebu�er is simply a set of some number of bits� The number of bits
per pixel may also vary depending on the particular GL implementation or
context�

Corresponding bits from each pixel in the framebu�er are grouped to�
gether into a bitplane� each bitplane contains a single bit from each pixel�
These bitplanes are grouped into several logical bu�ers� These are the color�
depth� stencil� and accumulation bu�ers� The color bu�er actually consists
of a number of bu�ers� the front left bu�er� the front right bu�er� the back
left bu�er� the back right bu�er� and some number of auxiliary bu�ers� Typ�
ically the contents of the front bu�ers are displayed on a color monitor while
the contents of the back bu�ers are invisible� �Monoscopic contexts display
only the front left bu�er� stereoscopic contexts display both the front left
and the front right bu�ers�	 The contents of the auxiliary bu�ers are never
visible� All color bu�ers must have the same number of bitplanes� although
an implementation or context may choose not to provide right bu�ers� back
bu�ers� or auxiliary bu�ers at all� Further� an implementation or context
may not provide depth� stencil� or accumulation bu�ers�

Color bu�ers consist of either unsigned integer color indices or R� G�
B� and� optionally� A unsigned integer values� The number of bitplanes
in each of the color bu�ers� the depth bu�er� the stencil bu�er� and the

��

Version 1.0 - 1 July 1994

�
 CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop
(colorindex only)

To
Framebuffer

Framebuffer

(RGBA Only)

Figure ���� Per�fragment operations�

accumulation bu�er is �xed and window dependent� If an accumulation
bu�er is provided� it must have at least as many bitplanes per R� G� and B
color component as do the color bu�ers�

The initial state of all provided bitplanes is unde�ned�

��� Per�Fragment Operations

A fragment produced by rasterization with window coordinates of �xw� yw	
modi�es the pixel in the framebu�er at that location based on a number of
parameters and conditions� We describe these modi�cations and tests� dia�
grammed in Figure
��� in the order in which they are performed� Figure
��
diagrams these modi�cations and tests�

����� Pixel Ownership Test

The �rst test is to determine if the pixel at location �xw� yw	 in the frame�
bu�er is currently owned by the GL �more precisely� by this GL context	� If

Version 1.0 - 1 July 1994

���� PER�FRAGMENT OPERATIONS ��

it is not� the window system decides the fate the incoming fragment� Pos�
sible results are that the fragment is discarded or that some subset of the
subsequent per�fragment operations are applied to the fragment� This test
allows the window system to control the GL�s behavior� for instance� when
a GL window is obscured�

����� Scissor test

The scissor test determines if �xw� yw	 lies within the scissor rectangle de�ned
by four values� These values are set with

void Scissor� int left� int bottom� sizei width�
sizei height 	 �

If left � xw � left � width and bottom � yw � bottom � height� then the
scissor test passes� Otherwise� the test fails and the fragment is discarded�
The test is enabled or disabled using Enable or Disable using the con�
stant SCISSOR TEST� When disabled� it is as if the scissor test always passes�
If either width or height is less than zero� then the error INVALID VALUE is
generated� The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled� In the initial state
left � bottom �
� width and height are determined by the size of the
GL window� Initially� the scissor test is disabled�

����� Alpha test

This step applies only in RGBA mode� In color index mode� proceed to the
next step� The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment�s alpha value and a constant
value� The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST� When disabled�
it is as if the comparison always passes� The test is controlled with

void AlphaFunc� enum func� clampf ref 	 �

func is a symbolic constant indicating the alpha test function� ref is a refer�
ence value� ref is clamped to lie in �
� ��� and then converted to a �xed�point
value according to the rules given for an A component in section ������� For
purposes of the alpha test� the fragment�s alpha value is also rounded to
the nearest integer� The possible constants specifying the test function are
NEVER� ALWAYS� LESS� LEQUAL� EQUAL� GEQUAL� GREATER� or NOTEQUAL� meaning

Version 1.0 - 1 July 1994

�� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

pass the fragment never� always� if the fragment�s alpha value is less than�
less than or equal to� equal to� greater than or equal to� greater than� or not
equal to the reference value� respectively�

The required state consists of the �oating�point reference value� an eight�
valued integer indicating the comparison function� and a bit indicating if the
comparison is enabled or disabled� The initial state is for the reference value
to be
 and the function to be ALWAYS� Initially� the alpha test is disabled�

����� Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil bu�er at location �xw� yw	 and
a reference value� The test is controlled with

void StencilFunc� enum func� int ref� uint mask 	 �
void StencilOp� enum sfail� enum dpfail� enum dppass 	 �

The test is enabled or disabled with the Enable andDisable commands� us�
ing the symbolic constant STENCIL TEST� When disabled� the stencil test and
associated modi�cations are not made� and the fragment is always passed�

ref is an integer reference value that is used in the unsigned stencil com�
parison� It is clamped to the range �
� �s� ��� where s is the number of bits
in the stencil bu�er� func is a symbolic constant that determines the stencil
comparison function� the eight symbolic constants are NEVER� ALWAYS� LESS�
LEQUAL� EQUAL� GEQUAL� GREATER� or NOTEQUAL� Accordingly� the stencil test
passes never� always� if the reference value is less than� less than or equal to�
equal to� greater than or equal to� greater than� or not equal to the masked
stored value in the stencil bu�er� The s least signi�cant bits of mask are
bitwise ANDed with both the reference and the stored stencil value� The
ANDed values are those that participate in the comparison�

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass� sfail
indicates what action is taken if the stencil test fails� The symbolic constants
are KEEP� ZERO� REPLACE� INCR� DECR� and INVERT� These correspond to keeping
the current value� setting it to zero� replacing it with the reference value�
incrementing it� decrementing it� or bitwise inverting it� For purposes of
increment and decrement� the stencil bits are considered as an unsigned
integer� values clamp at
 and the maximum representable value� The same
symbolic values are given to indicate the stencil action if the depth bu�er
test �below	 fails �dpfail	� or if it passes �dppass	�

Version 1.0 - 1 July 1994

���� PER�FRAGMENT OPERATIONS ��

If the stencil test fails� the incoming fragment is discarded� The state
required consists of the most recent values passed to StencilFunc and Sten

cilOp� and a bit indicating whether stencil testing is enabled or disabled�
In the initial state� stenciling is disabled� the stencil reference value is zero�
the stencil comparison function is ALWAYS� and the stencil mask is all ones�
Initially� all three stencil operations are KEEP� If there is no stencil bu�er� no
stencil modi�cation can occur� and it is as if the stencil tests always pass�
regardless of any calls to StencilOp�

����	 Depth bu�er test

The depth bu�er test discards the incoming fragment if a depth comparison
fails� The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST� When disabled�
the depth comparison and subsequent possible updates to the depth bu�er
value are bypassed and the fragment is passed to the next operation� The
stencil value� however� is modi�ed as indicated below as if the depth bu�er
test passed� If enabled� the comparison takes place and the depth bu�er and
stencil value may subsequently be modi�ed�

The comparison is speci�ed with

void DepthFunc� enum func 	 �

This command takes a single symbolic constant� one of NEVER� ALWAYS� LESS�
LEQUAL� EQUAL� GREATER� GEQUAL� NOTEQUAL� Accordingly� the depth bu�er test
passes never� always� if the incoming fragment�s zw value is less than� less
than or equal to� equal to� greater than� greater than or equal to� or not equal
to the depth value stored at the location given by the incoming fragment�s
�xw� yw	 coordinates�

If the depth bu�er test fails� the incoming fragment is discarded� The
stencil value at the fragment�s �xw� yw	 coordinates is updated according to
the function currently in e�ect for depth bu�er test failure� Otherwise� the
fragment continues to the next operation and the value of the depth bu�er
at the fragment�s �xw� yw	 location is set to the fragment�s zw value� In this
case the stencil value is updated according to the function currently in e�ect
for depth bu�er test success�

The necessary state is an eight�valued integer and a single bit indicating
whether depth bu�ering is enabled or disabled� In the initial state the
function is LESS and the test is disabled�

If there is no depth bu�er� it is as if the depth bu�er test always passes�

Version 1.0 - 1 July 1994

�� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

����� Blending

Blending combines the incoming fragment�s R� G� B� and A values with the
R� G� B� and A values stored in the framebu�er at the incoming fragment�s
�xw� yw	 location� This blending is dependent on the incoming fragment�s
alpha value and that of the corresponding currently stored pixel� Blending
applies only in RGBA mode� in color index mode it is bypassed� Blending
is enabled or disabled using Enable or Disable with the symbolic constant
BLEND� If it is disabled� proceed to the next stage�

The command that controls blending is

void BlendFunc� enum src� enum dst 	 �

src indicates how to compute a source blending factor� while dst indicates
how to compute a destination factor� The possible arguments and their
corresponding computed source and destination factors are summarized in
Tables
�� and
��� In these tables� A is a single alpha value� and C is a
quadruplet of R� G� B� and A values� A subscript of s indicates a value
from an incoming fragment� one of d indicates the corresponding current
framebu�er value� Division of a quadruplet by a scalar means dividing each
element by that value� Addition or subtraction of quadruplets or triplets
means adding or subtracting them component�wise�

The computations in Tables
�� and
�� are e�ectively carried out in
�oating�point and yield �oating�point blending factors� Destination �frame�
bu�er	 components referred to in the tables are taken to be �xed�point val�
ues represented according to the scheme given in section ������ �Final Color
Processing	� as are source �fragment	 components� Any implied conversion
to �oating�point must leave
 and � invariant�

The computed source and destination blending quadruplets are applied
to the source and destination R� G� B� and A values to obtain a new set of
values that are sent to the next operation� Let the source and destination
blending quadruplets be S and D� respectively� Then a quadruplet of values
is computed as

CsS � CdD�

where multiplication of quadruplets means multiplying them component�
wise� Then each value in this quadruplet is clamped to �n � �� where n is
the number of bits allocated to that color component in the framebu�er�
and the four values are sent to the next operation�

The state required is two integers indicating the source and destina�
tion blending functions and a bit indicating whether blending is enabled

Version 1.0 - 1 July 1994

���� PER�FRAGMENT OPERATIONS ��

Value Blend Factors

ZERO �
�
�
�
	

ONE ��� �� �� �	

DST COLOR Rd� Gd� Bd� Ad

ONE MINUS DST COLOR ��� �� �� �	� �Rd� Gd� Bd� Ad	

SRC ALPHA �As� As� As� As	

ONE MINUS SRC ALPHA ��� �� �� �	� �As� As� As� As	

DST ALPHA �Ad� Ad� Ad� Ad	

ONE MINUS DST ALPHA ��� �� �� �	� �Ad� Ad� Ad� Ad	

SRC ALPHA SATURATE �f� f� f� �	

Table
��� Values controlling the source blending function and the source
blending values they compute� f � min�As� �� Ad	�

Value Blend factors

ZERO �
�
�
�
	

ONE ��� �� �� �	

SRC COLOR Rs� Gs� Bs� As

ONE MINUS SRC COLOR ��� �� �� �	� �Rs� Gs� Bs� As	

SRC ALPHA �As� As� As� As	

ONE MINUS SRC ALPHA ��� �� �� �	� �As� As� As� As	

DST ALPHA �Ad� Ad� Ad� Ad	

ONE MINUS DST ALPHA ��� �� �� �	� �Ad� Ad� Ad� Ad	

Table
��� Values controlling the destination blending function and the des�
tination blending values they compute�

Version 1.0 - 1 July 1994

�

 CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

or disabled� The initial state of the blending functions is ONE for the source
function and ZERO for the destination function� initially� blending is disabled�

Blending occurs once for each color bu�er currently enabled for writing
�section
����	 using each bu�er�s color for Cd� If a color bu�er has no A
value� then it is as if the destination A value is ��

����
 Dithering

Dithering selects between two color values or indices� In RGBA mode� con�
sider the value of any of the color components as a �xed�point value with m
bits to the left of the binary point� where m is the number of bits allocated
to that component in the framebu�er� call each such value c� For each c�
dithering selects a value c� such that c� � fmaxf
� dce � �g� dceg �after this
selection� treat c� as a �xed point value in �
��� with m bits	� This selec�
tion may depend on the xw and yw coordinates of the pixel� In color index
mode� the same rule applies with c being a single color index� c must not be
larger than the maximum value representable in the framebu�er for either
the component or the index� as appropriate�

Many dithering algorithms are possible� but a dithered value produced
by any algorithm must depend only the incoming value and the fragment�s x
and y window coordinates� If dithering is disabled� then each color compo�
nent is truncated to a �xed�point value with as many bits as there are in the
corresponding component in the framebu�er� a color index is rounded to the
nearest integer representable in the color index portion of the framebu�er�

Dithering is enabled with Enable and disabled with Disable using the
symbolic constant DITHER� The state required is thus a single bit� Initially�
dithering is enabled� In RGBA mode� this is the last operation� and the
result goes into the framebu�er� In color index mode� continue on to the
last operation�

����� Logical Operation

Finally� a logical operation is applied between the incoming fragment and
the value stored at the corresponding location in the framebu�er� the result
replaces the current framebu�er value� The logical operation is enabled or
disabled with Enable or Disable using the symbolic constant LOGIC OP�
The logical operation is selected by

void LogicOp� enum op 	 �

Version 1.0 - 1 July 1994

���� PER�FRAGMENT OPERATIONS �
�

Argument value Operation

CLEAR

AND s � d

AND REVERSE s � �d
COPY s

AND INVERTED �s � d
NOOP d

XOR s xor d
OR s � d
NOR ��s � d	
EQUIV ��s xor d	
INVERT �d
OR REVERSE s � �d
COPY INVERTED �s
OR INVERTED �s � d
NAND ��s � d	
SET �

Table
��� Arguments to LogicOp and their corresponding operations�

op is a symbolic constant� The possible constants and the corresponding
logical operations are enumerated in Table
��� in this table� s is the value
of the incoming fragment and d is the value stored in the framebu�er�

Note that the SET operation sets all bits of the result to �� The result
replaces the value in the framebu�er at the fragment�s �x� y	 coordinates�
The numeric values assigned to the symbolic constants are the same as the
those assigned to the corresponding symbolic values in the X window system�

LogicOp applies only in color index mode� in RGBA mode it does not
occur and the previous operation is the last one applied to incoming frag�
ments� LogicOp occurs once for each color bu�er selected for writing� The
required state is an integer indicating the logical operation� and a bit to
indicate whether the logical operation is enabled or disabled� The initial
state is for the logic operation to be given by COPY� and it is disabled�

Version 1.0 - 1 July 1994

�
� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

��� Whole Framebu�er Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebu�er� This section describes operations
that control or a�ect the whole framebu�er�

����� Selecting a Bu�er for Writing

The �rst such operation is controlling the bu�er into which color values are
written� This is accomplished with

void DrawBu�er� enum buf 	 �

buf is a symbolic constant specifying zero� one� two� or four bu�ers for writ�
ing� The constants are NONE� FRONT LEFT� FRONT RIGHT� BACK LEFT� BACK RIGHT�
FRONT� BACK� LEFT� RIGHT� FRONT AND BACK� and AUX� through AUXn� where n��
is the number of available auxiliary bu�ers�

The constants refer to the four potentially visible bu�ers front left�
front right� back left� and back right� and to the auxiliary bu�ers� Argu�
ments other than AUXi that omit reference to LEFT or RIGHT refer to both left
and right bu�ers� Arguments other than AUXi that omit reference to FRONT

or BACK refer to both front and back bu�ers� AUXi enables drawing only to
auxiliary bu�er i� Each AUXi adheres to AUXi � AUX�� i� The constants and
the bu�ers they indicate are summarized in Table
�
� If DrawBu�er is
is supplied with a constant �other than NONE	 that does not indicate any of
the color bu�ers allocated to the GL context� the error INVALID OPERATION

results�
Indicating a bu�er or bu�ers usingDrawBu�er causes subsequent pixel

color value writes to a�ect the indicated bu�ers� If more than one color
bu�er is selected for drawing� blending and logical operations are computed
and applied independently for each bu�er� Calling DrawBu�er with a
value of NONE inhibits the writing of color values to any bu�er�

Monoscopic contexts include only left bu�ers� while stereoscopic contexts
include both left and right bu�ers� Likewise� single bu�ered contexts include
only front bu�ers� while double bu�ered contexts include both front and back
bu�ers� The type of context is selected at GL initialization�

The state required to handle bu�er selection is a set of up to
� n bits�

 bits indicate if the front left bu�er� the front right bu�er� the back left
bu�er� or the back right bu�er� are enabled for color writing� The other n
bits indicate which of the auxiliary bu�ers is enabled for color writing� In

Version 1.0 - 1 July 1994

���� WHOLE FRAMEBUFFER OPERATIONS �
�

symbolic front front back back aux
constant left right left right i

NONE

FRONT LEFT �
FRONT RIGHT �
BACK LEFT �
BACK RIGHT �
FRONT � �
BACK � �
LEFT � �
RIGHT � �
FRONT AND BACK � � � �
AUXi �

Table
�
� Arguments to DrawBu�er and the bu�ers that they indicate�

the initial state� the front bu�er or bu�ers are enabled if there are no back
bu�ers� otherwise� only the back bu�er or bu�ers are enabled�

����� Fine Control of Bu�er Updates

Four commands are used to mask the writing of bits to each of the logical
framebu�ers after all per�fragment operations have been performed� The
commands

void IndexMask� uint mask 	 �
void ColorMask� boolean r� boolean g� boolean b�

boolean a 	 �

control the color bu�er or bu�ers �depending on which bu�ers are currently
indicated for writing	� The least signi�cant n bits of mask� where n is the
number of bits in a color index bu�er� specify a mask� Where a � appears
in this mask� the corresponding bit in the color index bu�er �or bu�ers	 is
written� where a
 appears� the bit is not written� This mask applies only in
color index mode� In RGBA mode� ColorMask is used to mask the writing
of R� G� B and A values to the color bu�er or bu�ers� r� g� b� and a indicate
whether R� G� B� or A values� respectively� are written or not �a value of
TRUE means that the corresponding value is written	� In the initial state� all

Version 1.0 - 1 July 1994

�

 CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

bits �in color index mode	 and all color values �in RGBA mode	 are enabled
for writing�

The depth bu�er can be enabled or disabled for writing zw values using

void DepthMask� boolean mask 	 �

If mask is non�zero� the depth bu�er is enabled for writing� otherwise� it is
disabled� In the initial state� the depth bu�er is enabled for writing�

The command

void StencilMask� uint mask 	 �

controls the writing of particular bits into the stencil planes� The least
signi�cant s bits of mask comprise an integer mask �s is the number of bits
in the stencil bu�er	� just as for IndexMask� The initial state is for the
stencil plane mask to be all ones�

The state required for the various masking operations is two integers and
a bit� an integer for color indices� an integer for stencil values� and a bit
for depth values� A set of four bits is also required indicating which color
components of an RGBA value should be written� In the initial state� the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing�

����� Clearing the Bu�ers

The GL provides a means for setting portions of every pixel in a particular
bu�er to the same value� The argument to

void Clear� bitfield buf 	 �

is the bitwise OR of a number of values indicating which bu�ers
are to be cleared� The values are COLOR BUFFER BIT� DEPTH BUFFER BIT�
STENCIL BUFFER BIT� and ACCUM BUFFER BIT� indicating the bu�ers currently
enabled for color writing� the depth bu�er� the stencil bu�er� and the accu�
mulation bu�er �see below	� respectively� The value to which each bu�er is
cleared depends on the setting of the clear value for that bu�er� If the mask
is not a bitwise OR of the speci�ed values� then the error INVALID VALUE is
generated�

void ClearColor� clampf r� clampf g� clampf b� clampf a 	 �

Version 1.0 - 1 July 1994

���� WHOLE FRAMEBUFFER OPERATIONS �
�

sets the clear value for the color bu�ers in RGBAmode� Each of the speci�ed
components is clamped to �
� �� and converted to �xed�point according to
the rules of section �������

void ClearIndex� float index 	 �

sets the clear color index� index is converted to a �xed�point value with
unspeci�ed precision to the left of the binary point� the integer part of this
value is then masked with �m � �� where m is the number of bits in a color
index value stored in the framebu�er�

void ClearDepth� clampd d 	 �

takes a �oating�point value that is clamped to the range �
� �� and con�
verted to �xed�point according to the rules for a window z value given in
section ������ Similarly�

void ClearStencil� int s 	 �

takes a single integer argument that is the value to which to clear the stencil
bu�er� s is masked to the number of bitplanes in the stencil bu�er�

void ClearAccum� float r� float g� float b� float a 	 �

takes four �oating�point arguments that are the values� in order� to which
to set the R� G� B� and A values of the accumulation bu�er �see the next
section	� These values are clamped to the range ���� �� when they are spec�
i�ed�

When Clear is called� the only per�fragment operations that are applied
�if enabled	 are the pixel ownership test� the scissor test� and dithering� The
masking operations described in the last section �
����	 are also e�ective� If
a bu�er is not present� then a Clear directed at that bu�er has no e�ect�

The state required for clearing is a clear value for each of the color bu�er�
the depth bu�er� the stencil bu�er� and the accumulation bu�er� Initially�
the RGBA color clear value is �
�
�
�
	� the clear color index is
� and the
stencil bu�er and accumulation bu�er clear values are all
� The depth
bu�er clear value is initially ��
�

����� The Accumulation Bu�er

Each portion of a pixel in the accumulation bu�er consists of four values� one
for each of R� G� B� and A� The accumulation bu�er is controlled exclusively
through the use of

Version 1.0 - 1 July 1994

�
� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

void Accum� enum op� float value 	 �

�except for clearing it	� op is a symbolic constant indicating an accumula�
tion bu�er operation� and value is a �oating�point value to be used in that
operation� The possible operations are ACCUM� LOAD� RETURN� MULT� and ADD�

The accumulation bu�er operations apply identically to every pixel� so
we describe the e�ect of each operation on an individual pixel� Accumulation
bu�er values are taken to be signed values in the range ���� ��� Using ACCUM

obtains R� G� B� and A components from the bu�er currently selected for
reading �section
����	� Each component� considered as a �xed�point value
in �
��� �see section ������	� is converted to �oating�point� Each result is then
multiplied by value� The results of this multiplication are then added to the
corresponding color component currently in the accumulation bu�er� and
the resulting color value replaces the current accumulation bu�er color value�
The LOAD operation has the same e�ect as ACCUM� but the computed values
replace the corresponding accumulation bu�er components rather than being
added to them�

The RETURN operation takes each color value from the accumulation
bu�er� multiplies each of the R� G� B� and A components by value� The
resulting color value is placed in the bu�ers currently enabled for color writ�
ing as if it were a fragment produced from rasterization� except that the only
per�fragment operations applied are the pixel ownership test and� if enabled�
dithering �section
��	� color masking �section
����	 is also applied�

The MULT operation multiplies each R� G� B� and A in the accumulation
bu�er by value and then returns the scaled color components to their corre�
sponding accumulation bu�er locations� ADD is the same as MULT except that
value is added to each of the color components�

The color components operated on by Accum must be clamped only
if the operation is RETURN� In this case� a value sent to the enabled color
bu�ers is �rst clamped to �
� ��� Otherwise� results are unde�ned if the
result of an operation on a color component is too large �in magnitude	 to
be represented by the number of available bits� When the scissor test is
enabled �section
����	� then only those pixels within the current scissor box
are updated by any Accum operation� otherwise� all pixels in the window
are updated� If there is no accumulation bu�er� or if the GL is in color index
mode� Accum generates the error INVALID OPERATION�

No state �beyond the accumulation bu�er itself	 is required for accumu�
lation bu�ering�

Version 1.0 - 1 July 1994

��
� DRAWING
 READING
 AND COPYING PIXELS �
�

��� Drawing� Reading� and Copying Pixels

Pixels may be written to and read from the framebu�er using the Draw

Pixels and ReadPixels commands� CopyPixels can be used to copy a
block of pixels from one portion of the framebu�er to another�

����� Writing to the Stencil Bu�er

The operation of DrawPixels was described in section ������ except if the
format argument was STENCIL INDEX� In this case� all operations described for
DrawPixels take place� but window �x� y	 coordinates� each with the corre�
sponding stencil index� are produced in lieu of fragments� Each coordinate�
stencil index pair is sent directly to the per�fragment operations� bypassing
the texture� fog� and antialiasing application stages of rasterization� Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests� all other per�fragment operations are bypassed� Finally� each
stencil index is written to its indicated location in the framebu�er� subject
to the current setting of StencilMask�

The error INVALID OPERATION results if there is no stencil bu�er�

����� Reading Pixels

The method for reading pixels from the framebu�er and placing them in
client memory is diagrammed in Figure
��� We describe the stages of the
pixel reading process in the order in which they occur�

Pixels are read using

void ReadPixels� int x� int y� sizei width� sizei height�
enum format� enum type� void �data 	 �

The arguments after x and y to ReadPixels correspond to those of Draw

Pixels� The pixel storage modes that apply toReadPixels are summarized
in Table
���

Obtaining Pixels from the Framebu�er

If the format is DEPTH COMPONENT� then values are obtained from the depth
bu�er� If there is no depth bu�er� the error INVALID OPERATION occurs� If
the format is STENCIL INDEX� then values are taken from the stencil bu�er�
again� if there is no stencil bu�er� the error INVALID OPERATION occurs� For

Version 1.0 - 1 July 1994

�
� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

shift
offset

map
to

[0,1]

scale
bias

index−>index
lookup

RGBA−>RGBA
lookup

Index
(stencil,
colorindex)

Pixels from
Framebuffer

RGBA

convert
to
L

pack

L

RGBA

Index

byte short long float
Data Stream

(index or component)
to memory

Pixel
Transfer
Modes

Pixel
Storage
Modes

index−>RGBA
lookup

Z

Z

clamp
to

[0,1]

mask
to

[0.0,2n−1]

Figure ���� Operation ofReadPixels� The parameters controlling the stages
above the dotted line are set with PixelTransfer or PixelMap while those
controlling the stages below the line are set with PixelStore�

Parameter Name Type Initial Value Valid Range

PACK SWAP BYTES boolean FALSE TRUE�FALSE

PACK LSB FIRST boolean FALSE TRUE�FALSE

PACK ROW LENGTH integer
 �
��	

PACK SKIP ROWS integer
 �
��	

PACK SKIP PIXELS integer
 �
��	

PACK ALIGNMENT integer
 ����
��

Table
��� PixelStore parameters pertaining to ReadPixels�

Version 1.0 - 1 July 1994

��
� DRAWING
 READING
 AND COPYING PIXELS �
�

all other formats� the bu�er from which values are obtained is one of the
color bu�ers� the selection of color bu�er is controlled with ReadBu�er�

The command

void ReadBu�er� enum src 	 �

takes a symbolic constant as argument� The possible values are FRONT LEFT�
FRONT RIGHT� BACK LEFT� BACK RIGHT� FRONT� BACK� LEFT� RIGHT� and AUX�

through AUXn� FRONT and LEFT refer to the front left bu�er� BACK refers
to the back left bu�er� and RIGHT refers to the front right bu�er� The other
constants correspond directly to the bu�ers that they name� If the requested
bu�er is missing� then the error INVALID OPERATION is generated� The ini�
tial setting for ReadBu�er is FRONT if there is no back bu�er and BACK

otherwise�
ReadPixels obtains values from the selected bu�er from each pixel with

lower left hand corner at �x � i� y � j	 for
 � i � width and
 � j �
height� this pixel is said to be the ith pixel in the jth row� If any of these
pixels lies outside of the window allocated to the current GL context� the
values obtained for those pixels are unde�ned� Results are also unde�ned
for individual pixels that are not owned by the current context� Otherwise�
ReadPixels obtains values from the selected bu�er� regardless of how those
values were placed there�

The number of values obtained from the selected bu�er depends on the
format� If the format is LUMINANCE� R� G� and B values are obtained� while
if it is LUMINANCE ALPHA� then R� G� B� and A values are obtained� If the
framebu�er does not support alpha values then the A that is obtained is
��
� If the format is one of RED� GREEN� BLUE� ALPHA� RGB� RGBA� LUMINANCE� or
LUMINANCE ALPHA� and the GL is in color index mode� then the color index
is obtained� Otherwise� Table ��� gives the type and number of values that
are obtained from the selected bu�er for each pixel�

Conversion of RGBA values

This step applies only if the GL is in RGBA mode� and then only if format
is neither STENCIL INDEX nor DEPTH COMPONENT� The error INVALID OPERATION

results �in RGBA mode	 if format is COLOR INDEX�
The R� G� and B �and possibly A	 values form a group of elements� Each

element is taken to be a �xed�point value in �
��� with m bits� wherem is the
number of bits in the corresponding color component of the selected bu�er
�see section ������	�

Version 1.0 - 1 July 1994

��
 CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT� An element is taken to
be a �xed�point value in �
��� with m bits� where m is the number of bits in
the depth bu�er �see section �����	�

Arithmetic on components

This step applies only to component groups� An R element is multiplied by
RED SCALE� a G element by GREEN SCALE� a B element by BLUE SCALE� and an
A element by ALPHA SCALE� a depth component is multiplied by DEPTH SCALE�
Next� RED BIAS� GREEN BIAS� BLUE BIAS� ALPHA BIAS� or DEPTH BIAS is added
to each resulting element� as appropriate�

Arithmetic on Indices

This step applies only to indices� After the index is obtained from the
selected bu�er� the corresponding step for DrawPixels is applied to the
integer index �there are no bits to the right of the binary point in this case	�

RGBA to RGBA Lookup

This step applies only to RGBA component groups� It is identical to the
corresponding step for DrawPixels�

Index Lookup

This step applies only to indices� If format is one of RED� GREEN� BLUE�
ALPHA� RGB� RGBA� LUMINANCE� or LUMINANCE ALPHA� then the index is used to
reference
 tables of color components� PIXEL MAP I TO R� PIXEL MAP I TO G�
PIXEL MAP I TO B� and PIXEL MAP I TO A� Each of these tables must have �n

entries for some integer value of n �n may be di�erent for each table	� For
each table� the index is �rst rounded to the nearest integer� this value is
ANDed with �n � �� and the resulting value used as an address into the
table� The indexed value becomes an R� G� B� or A value� as appropriate�
The group of four elements so obtained replaces the index� changing the
group�s type to �component��

If the format is COLOR INDEX and if MAP COLOR is TRUE� then the index is
looked up in the PIXEL MAP I TO I table �otherwise� the index is not looked
up	� Again� the table must have �n entries for some n� and the integer part

Version 1.0 - 1 July 1994

��
� DRAWING
 READING
 AND COPYING PIXELS ���

of the index is ANDed with �n � �� producing a value� This value addresses
the table� and the value in the table replaces the index� The �oating�point
table value is �rst rounded to a �xed�point value with unspeci�ed precision�

Finally� if format is STENCIL INDEX and if MAP STENCIL is TRUE� then the
index is looked up as described in the preceding paragraph� but using the
PIXEL MAP S TO S table�

Conversion to L

This step applies only to RGBA component groups� and only if the format
is either LUMINANCE or LUMINANCE ALPHA� A value L is computed as

L � R� G� B

where R� G� and B are the values of the R� G� and B components� The
single computed L component replaces the R� G� and B components in the
group�

Final Conversion

For an index� if the type is not FLOAT� �nal conversion consists of masking
the index with the value given Table
��� if the type is FLOAT� then the inte�
ger index is converted to single�precision �oating�point� For a component�
each component is �rst clamped to �
� ��� Then� the appropriate conversion
formula from Table
�� is applied to the component�

Placement in Client Memory

Groups of elements are placed in memory just as they are taken frommemory
for DrawPixels� That is� the ith group of the jth row �corresponding to
the ith pixel in the jth row	 is placed in memory just where the ith group of
the jth row would be taken from for DrawPixels� See Unpacking under
section ������ The only di�erence is that the storage mode parameters whose
names begin with PACK are used instead of those whose names begin with
UNPACK � If the format is RED� GREEN� BLUE� ALPHA� or LUMINANCE� only the
corresponding single element is written� Otherwise the number of elements
to be written is given by Table ����

In correspondence with DrawPixels� if PACK SWAP BYTES is TRUE� there
is no e�ect on a one�byte element� but bytes constituting a two�byte or
four�byte element are reversed �so that they are in an order opposite to the

Version 1.0 - 1 July 1994

��� CHAPTER �� FRAGMENTS AND THE FRAMEBUFFER

type Index Mask Component Conversion

UNSIGNED BYTE �
 � � ��
 � �	c

BYTE �	 � � ���
� �	c� ����

BITMAP � �

UNSIGNED SHORT ��� � � ���� � �	c

SHORT ��� � � ������ �	c� ����

UNSIGNED INT ��� � � ���� � �	c

INT ��� � � ������ �	c� ����

FLOAT none c

Table
��� ReadPixels index masks and component conversion formulas� c
represents a component value to be converted�

client�s native byte ordering for the indicated type	 immediately prior to be�
ing placed in client memory� If PACK SWAP BYTES is FALSE� then no swapping
occurs� If type is BITMAP� then each byte of client memory is eight bits� each
of which is a single element� The single�bit elements within each byte are or�
dered from most signi�cant to least signi�cant if the value of PACK LSB FIRST

is FALSE� otherwise� the ordering is from least signi�cant to most signi�cant�
The BITMAP type is valid only if format is either COLOR INDEX or STENCIL INDEX

�otherwise� results are unde�ned	�

����� Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebu�er to another� Pixel copying is diagrammed in Figure
���

void CopyPixels� int x� int y� sizei width� sizei height�
enum type 	 �

type is a symbolic constant that must be one of COLOR� STENCIL� or DEPTH�
indicating that the values to be transferred are colors� stencil values� or depth
values� respectively� The �rst four arguments have the same interpretation
as the corresponding arguments to ReadPixels�

Values are obtained from the framebu�er� converted �if appropriate	�
subjected to arithmetic operations� and looked up in tables just as if Read

Pixels were called with the corresponding arguments� If the type is STENCIL
or DEPTH� then it is as if the format for ReadPixels were STENCIL INDEX

Version 1.0 - 1 July 1994

��
� DRAWING
 READING
 AND COPYING PIXELS ���

shift
offset

map
to

[0,1]

scale
bias

index−>index
lookup

RGBA−>RGBA
lookup

Index
(stencil,
colorindex)

Pixels from
Framebuffer

RGBA

Pixels to
Framebuffer

Z

clamp
to

[0,1]

mask
to

[0.0,2n−1]

Figure ���� Operation ofCopyPixels� All parameters a�ecting pixel copying
are set with PixelTransfer or PixelMap�

or DEPTH COMPONENT� respectively� If the type is COLOR� then if the GL is in
RGBA mode� it is as if the format were RGBA� while if the GL is in color
index mode� it is as if the format were COLOR INDEX�

The groups of elements so obtained are then written to the framebu�er
just as if DrawPixels had been given width and height� beginning with
�nal conversion of elements� The e�ective format is the same as that already
described�

����� Pixel draw�read state

The state required for pixel operations consists of the parameters that are
set with PixelStore� PixelTransfer� and PixelMap� This state has been
summarized in Tables ���� ���� and ���� The current setting ofReadBu�er�
a twelve�valued integer� is also required� along with the current raster posi�
tion �section ����	� State set with PixelStore is GL client state�

Version 1.0 - 1 July 1994

Chapter �

Special Functions

This chapter describes additional GL functionality that does not �t easily
into any of the preceding chapters� This functionality consists of evalua�
tors �used to model curves and surfaces	� selection �used to locate rendered
primitives on the screen	� feedback �which returns GL results before raster�
ization	� display lists �used to designate a group of GL commands for later
execution by the GL	� �ushing and �nishing �used to synchronize the GL
command stream	� and hints�

��� Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map�
ping to produce vertex� normal� and texture coordinates� and colors� The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client� Transformations� lighting� primitive
assembly� rasterization� and per�pixel operations are not a�ected by the use
of evaluators�

Consider the Rk�valued polynomial p�u	 de�ned by

p�u	 �
nX

i��

Bn
i �u	Ri ����	

with Ri � Rk and

Bn
i �u	 �

�
n

i

�
ui��� u	n�i�

the ith Bernstein polynomial of degree n �recall that
�
 � and
�
n
�

�

 �	�

Each Ri is a control point� The relevant command is

��

Version 1.0 - 1 July 1994

���� EVALUATORS ���

target k Values

MAP� VERTEX � � x� y� z vertex coordinates

MAP� VERTEX �
 x� y� z� w vertex coordinates

MAP� INDEX � color index

MAP� COLOR �
 R� G� B� A

MAP� NORMAL � x� y� z normal coordinates

MAP� TEXTURE COORD � � s texture coordinate

MAP� TEXTURE COORD � � s� t texture coordinates

MAP� TEXTURE COORD � � s� t� r texture coordinates

MAP� TEXTURE COORD �
 s� t� r� q texture coordinates

Table ���� Values speci�ed by the target to Map�� Values are given in the
order in which they are taken�

void Map�ffdg� enum type� T u�� T u�� int stride� int order�
T points 	 �

type is a symbolic constant indicating the range of the de�ned polynomial�
Its possible values� along with the evaluations that each indicates� are given
in Table ���� order is equal to n��� The error INVALID VALUE results if order
is less than one or greater than MAX EVAL ORDER� points is a pointer to a set of
n � � blocks of storage� Each block begins with k single�precision �oating�
point or double�precision �oating�point values� respectively� The rest of the
block may be �lled with arbitrary data� Table ��� indicates how k depends
on type and what the k values represent in each case�

stride is the number of single� or double�precision values �as appropriate	
in each block of storage� The error INVALID VALUE results if stride is less than
k� The order of the polynomial� order� is also the number of blocks of storage
containing control points�

u� and u� give two �oating�point values that de�ne the endpoints of the
pre�image of the map� When a value u� is presented for evaluation� the
formula used is

p��u�	 � p�
u� � u�
u� � u�

	�

The error INVALID VALUE results if u� � u��

Map� is analogous to Map�� except that it describes bivariate polyno�

Version 1.0 - 1 July 1994

��� CHAPTER �� SPECIAL FUNCTIONS

mials of the form

p�u� v	 �
nX

i��

mX
j��

Bn
i �u	B

m
j �v	Rij �

The form of the Map� command is

void Map�ffdg� enum target� T u�� T u�� int ustride�
int uorder� T v�� T v�� int vstride� int vorder� T points 	 �

target is a range type selected from the same group as is used for Map��
except that the string MAP� is replaced with MAP�� points is a pointer to
�n � �	�m � �	 blocks of storage �uorder � n � � and vorder � m � ��
the error INVALID VALUE results if either uorderorvorder is less than one or
greater than MAX EVAL ORDER	� The values comprising Rij are located

�ustride	i� �vstride	j

values �either single� or double�precision �oating�point� as appropriate	 past
the �rst value pointed to by points� u�� u�� v�� and v� de�ne the pre�image
rectangle of the map� a domain point �u�� v�	 is evaluated as

p��u�� v�	 � p�
u� � u�
u� � u�

�
v� � v�
v� � v�

	�

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above�
The error INVALID VALUE results if either ustride or vstride is less than k� or
if u� is equal to u�� or if v� is equal to v��

Figure ��� describes map evaluation schematically� an evaluation of en�
abled maps is e�ected in one of two ways� The �rst way is to use

void EvalCoordf��gffdg� T arg 	 �
void EvalCoordf��gffdgv� T arg 	 �

EvalCoord� causes evaluation of the enabled ��dimensional maps� The ar�
gument is the value �or a pointer to the value	 that is the domain coordinate�
u�� EvalCoord� causes evaluation of the enabled ��dimensional maps� The
two values specify the two domain coordinates� u� and v�� in that order�

When one of the EvalCoord commands is issued� all currently enabled
maps of the indicated dimension are evaluated� Then� for each enabled map�

Version 1.0 - 1 July 1994

���� EVALUATORS ���

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure
��� Map Evaluation�

it is as if a corresponding GL command were issued with the resulting co�
ordinates� with one important di�erence� The di�erence is that when an
evaluation is performed� the GL uses evaluated values instead of current
values for those evaluations that are enabled �otherwise� the current val�
ues are used	� The order of the e�ective commands is immaterial� except
that Vertex �for vertex coordinate evaluation	 must be issued last� Use of
evaluators has no e�ect on the current color� normal� or texture coordinates�

No command is e�ectively issued if the corresponding map �of the indi�
cated dimension	 is not enabled� If more than one evaluation is enabled for a
particular dimension �e�g� MAP� TEXTURE COORD � and MAP� TEXTURE COORD �	�
then only the result of the evaluation of the map with the highest number
of coordinates is used�

Finally� if either MAP� VERTEX � or MAP� VERTEX � is enabled� then the nor�
mal to the surface is computed analytically� If automatic normal generation
is enabled� then this computed normal is used as the normal associated with
a generated vertex� Automatic normal generation is controlled with Enable
and Disable with symbolic the constant AUTO NORMAL� If automatic normal
generation is disabled� then a corresponding normal map� if enabled� is used
to produce a normal� If neither automatic normal generation nor a normal
map are enabled� then no normal is sent with a vertex resulting from an
evaluation �the e�ect is that the current normal is used	�

For MAP VERTEX �� let q � p� For MAP VERTEX �� let q � �x�w� y�w� z�w	�
where �x� y� z� w	 � p� Then let

m �

q

u
�

q

v
�

Then the generated normal� n� is given by n �m�kmk�

Version 1.0 - 1 July 1994

��� CHAPTER �� SPECIAL FUNCTIONS

The second way to carry out evaluations is to use a set of commands
that provide for e�cient speci�cation of a series of evenly spaced values to
be mapped� This method proceeds in two steps� The �rst step is to de�ne
a grid in the domain� This is done using

void MapGrid�ffdg� int n� T u��� T u�� 	 �

for a ��dimensional map or

void MapGrid�ffdg� int nu� T u��� T u��� int nv� T v���
T v�� 	 �

for a ��dimensional map� In the case of MapGrid� u�� and u�� describe an
interval� while n describes the number of partitions of the interval� The
error INVALID VALUE results if n �
� For MapGrid�� �u��� v

�
�	 speci�es one

two�dimensional point and �u��� v
�
�	 speci�es another� nu gives the number of

partitions between u�� and u
�
�� and nv gives the number of partitions between

v�� and v��� If either nu �
 or nv �
� then the error INVALID VALUE occurs�
Once a grid is de�ned� an evaluation on a rectangular subset of that grid

may be carried out by calling

void EvalMesh�� enum mode� int p�� int p� 	 �

mode is either POINT or LINE� The e�ect is the same as performing the fol�
lowing code fragment� with �u� � �u�� � u��	�n�

Begin�type��
for i � p� to p� step ��

EvalCoord��i � �u� � u����
End���

where EvalCoord�f or EvalCoord�d is substituted for EvalCoord� as
appropriate� If mode is POINT� then type is POINTS� if mode is LINE� then type
is LINE STRIP� The one requirement is that if either i �
 or i � n� then the
value computed from i ��u� � u�� is precisely u�� or u��� respectively�

The corresponding commands for two�dimensional maps are

void EvalMesh�� enum mode� int p�� int p�� int q��
int q� 	 �

modemust be FILL� LINE� or POINT�Whenmode is FILL� then these commands
are equivalent to the following� with �u� � �u�� � u��	�n and �v� � �v�� �
v��	�m�

Version 1.0 - 1 July 1994

���� EVALUATORS ���

for i � q� to q� � � step ��

Begin�QUAD STRIP��

for j � p� to p� step ��

EvalCoord��j � �u� � u�� � i � �v� � v����
EvalCoord��j � �u� � u�� � �i� �	 � �v� � v����

End���

If mode is LINE� then a call to EvalMesh� is equivalent to

for i � q� to q� step ��

Begin�LINE STRIP��

for j � p� to p� step ��

EvalCoord��j � �u� � u�� � i � �v� � v����

End����
for i � p� to p� step ��

Begin�LINE STRIP��

for j � q� to q� step ��

EvalCoord��i � �u� � u�� � j � �v� � v����

End���

If mode is POINT� then a call to EvalMesh� is equivalent to

Begin�POINTS��

for i � q� to q� step ��

for j � p� to p� step ��

EvalCoord��j � �u� � u�� � i � �v� � v����

End���

Again� in all three cases� there is the requirement that
 � �u� � u�� � u���
n ��u� � u�� � u���
 ��v� � v�� � v��� and m ��v� � v�� � v���

An evaluation of a single point on the grid may also be carried out�

void EvalPoint�� int p 	 �

Calling it is equivalent to the command

EvalCoord��p �u� � u����

with �u� and u�� de�ned as above�

void EvalPoint�� int p� int q 	 �

is equivalent to the command

Version 1.0 - 1 July 1994

��
 CHAPTER �� SPECIAL FUNCTIONS

EvalCoord��p � �u� � u�� � q � �v� � v����

The state required for evaluators potentially consists of � ��dimensional
map speci�cations and � ��dimensional map speci�cations� as well as cor�
responding �ags for each speci�cation indicating which are enabled� Each
map speci�cation consists of one or two orders� an appropriately sized array
of control points� and a set of two values �for a ��dimensional map	 or four
values �for a ��dimensional map	 to describe the domain� The maximum
possible order� for either u or v� is implementation dependent �one maxi�
mum applies to both u and v	� but must be at least �� Each control point
consists of between one and four �oating�point values �depending on the
type of the map	� Initially� all maps have order � �making them constant
maps	� All vertex coordinate maps produce the coordinates �
�
�
� �	 �or
the appropriate subset	� all normal coordinate maps produce �
�
� �	� RGBA
maps produce ��������	� color index maps produce ��
� In the initial state�
all maps are disabled� A �ag indicates whether or not automatic normal
generation is enabled for ��dimensional maps� In the initial state� auto�
matic normal generation is disabled� Also required are two �oating�point
values and an integer number of grid divisions for the ��dimensional grid
speci�cation and four �oating�point values and two integer grid divisions for
the ��dimensional grid speci�cation� In the initial state� the bounds of the
domain interval for ��D is
 and ��
� respectively� for ��D� they are �
�
	
and ���
� ��
	� respectively� The number of grid divisions is � for ��D and
� in both directions for ��D� If any evaluation command is issued when no
vertex map is enabled� nothing happens�

��� Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window� The region is de�ned by the current model�
view and perspective matrices�

Selection works by returning an array of integer�valued names� This
array represents the current contents of the name stack� This stack is con�
trolled with the commands

void InitNames� void 	 �
void PopName� void 	 �
void PushName� uint name 	 �

Version 1.0 - 1 July 1994

���� SELECTION ���

void LoadName� uint name 	 �

InitNames empties �clears	 the name stack� PopName pops one name
o� the top of the name stack� PushName causes name to be pushed
onto the name stack� LoadName replaces the value on the top of the
stack with name� Loading a name onto an empty stack generates the er�
ror INVALID OPERATION� Popping a name o� of an empty stack generates
STACK UNDERFLOW� pushing a name onto a full stack generates STACK OVERFLOW�
The maximum allowable depth of the name stack is implementation depen�
dent but must be at least �
�

In selection mode� no fragments are rendered into the framebu�er� The
GL is placed in selection mode with

int RenderMode� enum mode 	 �

mode is a symbolic constant� one of RENDER� SELECT� or FEEDBACK� RENDER
is the default� corresponding to rendering as described until now� SELECT

speci�es selection mode� and FEEDBACK speci�es feedback mode �described
below	� Use of any of the name stack manipulation commands while the GL
is not in selection mode has no e�ect�

Selection is controlled using

void SelectBu�er� sizei n� uint �bu�er 	 �

bu�er is a pointer to an array of unsigned integers �called the selection
array	 to be potentially �lled with names� and n is an integer indicating the
maximum number of values that can be stored in that array� Placing the GL
in selection mode before SelectBu�er has been called results in an error of
INVALID OPERATION as does calling SelectBu�er while in selection mode�

In selection mode� if a point� line� polygon� or the valid coordinates pro�
duced by a RasterPos command intersects the clip volume �section ���
	
then this primitive �or RasterPos command	 causes a selection hit� In the
case of polygons� no hit occurs if the polygon would have been culled� but
selection is based on the polygon itself� regardless of the setting of Poly

gonMode� When in selection mode� whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called�
then a hit record is written into the selection array�

A hit record consists of the following items in order� a non�negative
integer giving the number of elements on the name stack at the time of the
hit� a minimum depth value� a maximum depth value� and the name stack

Version 1.0 - 1 July 1994

��� CHAPTER �� SPECIAL FUNCTIONS

with the bottommost element �rst� The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each �post�clipping	 vertex of each primitive that intersects the
clipping volume since the last hit record was written� The minimum and
maximum �each of which lies in the range �
� ��	 are each multiplied by �����
and rounded to the nearest unsigned integer to obtain the values that are
placed in the hit record�

Hit records are placed in the selection array by maintaining a pointer
into that array� When selection mode is entered� the pointer is initialized to
the beginning of the array� Each time a hit record is copied� the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored� If copying the hit record into the
selection array would cause the total number of values to exceed n� then as
much of the record as �ts in the array is written and an over�ow �ag is set�

Selection mode is exited by calling RenderMode with an argument
value other than SELECT� Whenever RenderMode is called in selection
mode� it returns the number of hit records copied into the selection array
and resets the SelectBu�er pointer to its last speci�ed value� Values are
not guaranteed to be written into the selection array until RenderMode

is called� If the selection array over�ow �ag was set� then RenderMode
returns �� and clears the over�ow �ag� The name stack is cleared and the
stack pointer reset whenever RenderMode is called�

The state required for selection consists of the address of the selection
array and its maximum size� the name stack and its associated pointer� a
minimum and maximum depth value� and several �ags� One �ag indicates
the currentRenderMode value� In the initial state� the GL is in the RENDER
mode� Another �ag is used to indicate whether or not a hit has occurred
since the last name stack manipulation� This �ag is reset upon entering
selection mode and whenever a name stack manipulation takes place� One
�nal �ag is required to indicate whether the maximum number of copied
names would have been exceeded� This �ag is reset upon entering selection
mode� This �ag� the address of the selection array� and its maximum size
are GL client state�

��� Feedback

Feedback� like selection� is a GL mode� The mode is selected by calling
RenderMode with FEEDBACK� When the GL is in feedback mode� no frag�

Version 1.0 - 1 July 1994

��
� FEEDBACK ���

ments are written to the framebu�er� Instead� information about primitives
that would have been rasterized is fed back to the application using the GL�

Feedback is controlled using

void FeedbackBu�er� sizei n� enum type� float �bu�er 	 �

bu�er is a pointer to an array of �oating�point values into which feedback in�
formation will be placed� and n is a number indicating the maximum number
of values that can be written to that array� type is a symbolic constant de�
scribing the information to be fed back for each vertex �see Figure ���	� The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBu�er has been made� or if a call to FeedbackBu�er
is made while in feedback mode�

While in feedback mode� each primitive that would be rasterized �or
bitmap or call to DrawPixels or CopyPixels� if the raster position is
valid	 generates a block of values that get copied into the feedback array�
If doing so would cause the number of entries to exceed the maximum� the
block is partially written so as to �ll the array �if there is any room left at
all	� The �rst block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array� with subsequent blocks
following� Each block begins with a code indicating the primitive type� fol�
lowed by values that describe the primitive�s vertices and associated data�
Entries are also written for bitmaps and pixel rectangles� Feedback occurs
after polygon culling �section �����	 and PolygonMode interpretation of
polygons �section ����
	 has taken place� It may also occur after polygons
with more than three edges are broken up into triangles �if the GL imple�
mentation renders polygons by performing this decomposition	� x� y� and z
coordinates returned by feedback are window coordinates� if w is returned�
it is in clip coordinates� In the case of bitmaps and pixel rectangles� the
coordinates returned are those of the current raster position� The texture
coordinates and colors returned are those resulting from the clipping oper�
ations as described in �section ������	�

The ordering rules for GL command interpretation also apply in feedback
mode� Each command must be fully interpreted and its e�ects on both GL
state and the values to be written to the feedback bu�er completed before
a subsequent command may be executed�

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK� When called while in feedback mode�
RenderMode returns the number of values placed in the feedback array

Version 1.0 - 1 July 1994

��
 CHAPTER �� SPECIAL FUNCTIONS

Type coordinates color texture total values

�D x� y ! ! �

�D x� y� z ! ! �

�D COLOR x� y� z k ! � � k

�D COLOR TEXTURE x� y� z k
 � � k

�D COLOR TEXTURE x� y� z� w k
 � � k

Table ���� Correspondence of feedback type to number of values per vertex�
k is � in color index mode and
 in RGBA mode�

and resets the feedback array pointer to be bu�er� The return value never
exceeds the maximum number of values passed to FeedbackBu�er�

If writing a value to the feedback bu�er would cause more values to be
written than the speci�ed maximum number of values� then the value is not
written and an over�ow �ag is set� In this case� RenderMode returns ��
when it is called� after which the over�ow �ag is reset� While in feedback
mode� values are not guaranteed to be written into the feedback bu�er before
RenderMode is called�

Figure ��� gives a grammar for the array produced by feedback� Each
primitive is indicated with a unique identifying value followed by some num�
ber of vertices� A vertex is fed back as some number of �oating�point values
determined by the feedback type� Table ��� gives the correspondence be�
tween feedback bu�er and the number of values returned for each vertex�

The command

void PassThrough� float token 	 �

may be used as a marker in feedback mode� token is returned as if it were a
primitive� it is indicated with its own unique identifying value� The ordering
of any PassThrough commands with respect to primitive speci�cation is
maintained by feedback� PassThrough may not occur between Begin and
End� It has no e�ect when the GL is not in feedback mode�

The state required for feedback is the pointer to the feedback array� the
maximum number of values that may be placed there� and the feedback type�
An over�ow �ag is required to indicate whether the maximum allowable
number of feedback values has been written� initially this �ag is cleared�
These state variables are GL client state� Feedback also relies on the same

Version 1.0 - 1 July 1994

���� DISPLAY LISTS ���

mode �ag as selection to indicate whether the GL is in feedback� selection�
or normal rendering mode�

��� Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution� The GL may be instructed to process
a particular display list �possibly repeatedly	 by providing a number that
uniquely speci�es it� Doing so causes the commands within the list to be
executed just as if they were given normally� The only exception pertains
to commands that rely upon client state� When such a command is accu�
mulated into the display list �that is� when issued� not when executed	� the
client state in e�ect at that time applies to the command� Only server state
is a�ected when the command is executed� As always� pointers which are
passed as arguments to commands are dereferenced when the command is
issued�

A display list is begun by calling

void NewList� uint n� enum mode 	 �

n is a positive integer to which the display list that follows is assigned� and
mode is a symbolic constant that controls the behavior of the GL during
display list creation� If mode is COMPILE� then commands are not executed
as they are placed in the display list� If mode is COMPILE AND EXECUTE� then
commands are executed as they are encountered� then placed in the display
list� If n �
� then the error INVALID VALUE is generated�

After calling NewList all subsequent GL commands are placed in the
display list �in the order the commands are issued	 until a call to

void EndList� void 	 �

occurs� after which the GL returns to its normal command execution state�
It is only when EndList occurs that the speci�ed display list is actually asso�
ciated with the index indicated withNewList� The error INVALID OPERATION

is generated if EndList is called without a previous matching NewList� or
if NewList is called a second time before calling EndList�

Once de�ned� a display list is executed by calling

void CallList� uint n 	 �

Version 1.0 - 1 July 1994

��� CHAPTER �� SPECIAL FUNCTIONS

feedback�list�
feedback�item feedback�list
feedback�item

feedback�item�
point
line�segment
polygon
bitmap
pixel�rectangle
passthrough

point�
POINT TOKEN vertex

line�segment�
LINE TOKEN vertex vertex
LINE RESET TOKEN vertex vertex

polygon�
POLYGON TOKEN n polygon�spec

polygon�spec�
polygon�spec vertex
vertex vertex vertex

bitmap�
BITMAP TOKEN vertex

pixel�rectangle�
DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough�
PASS THROUGH TOKEN f

vertex�
�D�

f f

�D�
f f f

�D COLOR�
f f f color

�D COLOR TEXTURE�
f f f color tex

�D COLOR TEXTURE�
f f f f color tex

color�
f f f f

f

tex�
f f f f

Figure ���� Feedback syntax� f is a �oating�point number� n is a �oating�
point integer giving the number of vertices in a polygon� The symbols
ending with TOKEN are symbolic �oating�point constants� The labels under
the �vertex� rule show the di�erent data returned for vertices depending
on the feedback type� LINE TOKEN and LINE RESET TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line
segment�

Version 1.0 - 1 July 1994

���� DISPLAY LISTS ���

n gives the index of the display list to be called� This causes the commands
saved in the display list to be executed� in order� just as if they were issued
without using a display list� If n �
� then the error INVALID VALUE is
generated�

The command

void CallLists� sizei n� enum type� void �lists 	 �

provides an e�cient means for executing a number of display lists� n is
an integer indicating the number of display lists to be called� and lists is
a pointer that points to an array of o�sets� Each o�set is constructed as
determined by lists as follows� First� type may be one of the constants BYTE�
UNSIGNED BYTE� SHORT� UNSIGNED SHORT� INT� UNSIGNED INT� or FLOAT indicating
that the array pointed to by lists is an array of bytes� unsigned bytes� shorts�
unsigned shorts� integers� unsigned integers� or �oats� respectively� In this
case each o�set is found by simply converting each array element to an
integer ��oating point values are truncated	� Further� type may be one of
� BYTES� � BYTES� or � BYTES� indicating that the array contains sequences of
�� �� or
 unsigned bytes� in which case each integer o�set is constructed
according to the following algorithm�

offset �

for i � � to b

offset � offset shifted left � bits
offset � offset � byte
advance to next byte in the array

b is �� �� or
� as indicated by type� If n �
� CallLists does nothing�
Each of the n constructed o�sets is taken in order and added to a display

list base to obtain a display list number� For each number� the indicated
display list is executed� The base is set by calling

void ListBase� uint base 	 �

to specify the o�set�
Indicating a display list index that does not correspond to any display

list has no e�ect� CallList orCallLists may appear inside a display list� �If
the mode supplied toNewList is COMPILE AND EXECUTE� then the appropriate
lists are executed� but the CallList or CallLists� rather than those lists�
constituent commands� is placed in the list under construction�	 To avoid
the possibility of in�nite recursion resulting from display lists calling one

Version 1.0 - 1 July 1994

��� CHAPTER �� SPECIAL FUNCTIONS

another� an implementation dependent limit is placed on the nesting level
of display lists during display list execution� This limit must be at least �
�

Two commands are provided to manage display list indices�

uint GenLists� sizei s 	 �

returns an integer n such that the indices n� � � � � n � s � � are previously
unused �i�e� there are s previously unused display list indices starting at n	�
GenLists also has the e�ect of creating an empty display list for each of
the indices n� � � � � n�s��� so that these indices all become used� GenLists
returns
 if there is no group of s contiguous previously unused display list
indices� or if s �
�

boolean IsList� uint list 	 �

returns TRUE if list is the index of some display list�

A contiguous group of display lists may be deleted by calling

void DeleteLists� uint list� sizei range 	 �

where list is the index of the �rst display list to be deleted and range is
the number of display lists to be deleted� All information about the display
lists is lost� and the indices become unused� Indices to which no display list
corresponds are simply ignored� If range �
� nothing happens�

Certain commands� when made within a display list� are not compiled
into the display list but are executed immediately� These are� IsList�
GenLists� DeleteLists� FeedbackBu�er� SelectBu�er� RenderMode�
ReadPixels� PixelStore� Flush� Finish� as well as IsEnabled and all of
the Get commands �see Chapter �	�

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list� In the initial
state� commands are executed immediately� If the bit indicates display
list creation� an index is required to indicate the current display list being
de�ned� Another bit indicates� during display list creation� whether or not
commands should be executed as they are compiled into the display list�
One integer is required for the current ListBase setting� its initial value
is zero� Finally� state must be maintained to indicate which integers are
currently in use as display list indices� In the initial state� no indices are in
use�

Version 1.0 - 1 July 1994

���� FLUSH AND FINISH ���

��� Flush and Finish

The command

void Flush� void 	 �

indicates that all commands that have previously been sent to the GL must
complete in �nite time�

The command

void Finish� void 	 �

forces all previous GL commands to complete� Finish does not return until
all e�ects from previously issued commands on GL client and server state
and the framebu�er are fully realized�

��� Hints

Certain aspects of GL behavior� when there is room for variation� may be
controlled with hints� A hint is speci�ed using

void Hint� enum target� enum hint 	 �

target is a symbolic constant indicating the behavior to be controlled� and
hint is a symbolic constant indicating what type of behavior is desired�
target may be one of PERSPECTIVE CORRECTION HINT� indicating the desired
quality of parameter interpolation� POINT SMOOTH HINT� indicating the desired
sampling quality of points� LINE SMOOTH HINT� indicating the desired sampling
quality of lines� POLYGON SMOOTH HINT� indicating the desired sampling quality
of polygons� and FOG HINT� indicating whether fog calculations are done per
pixel or per vertex� hint must be one of FASTEST� indicating that the most
e�cient option should be chosen� NICEST� indicating that the highest quality
option should be chosen� and DONT CARE� indicating no preference in the
matter�

The interpretation of hints is implementation dependent� An implemen�
tation may ignore them entirely�

Version 1.0 - 1 July 1994

Chapter �

State and State Requests

The values of most GL state variables can be obtained using a set of Get
commands� There are four commands for obtaining simple state variables�

void GetBooleanv� enum value� boolean �data 	 �
void GetIntegerv� enum value� int �data 	 �
void GetFloatv� enum value� float �data 	 �
void GetDoublev� enum value� double �data 	 �

The commands obtain boolean� integer� �oating�point� or double�precision
state variables� value is a symbolic constant indicating the state variable to
return� data is a pointer to an array of the indicated type in which to place
the returned data� In addition

boolean IsEnabled� enum value 	 �

can be used to determine if value is currently enabled �as with Enable	 or
disabled�

If a Get command is issued that returns value types di�erent from the
type of the value being obtained� a type conversion is performed� If Get

Booleanv is called� a �oating�point or integer value converts to FALSE if
and only if it is zero �otherwise it converts to TRUE	� If GetIntegerv �or
any of the Get commands below	 is called� a boolean value is interpreted
as either � or
� and a �oating�point value is rounded to the nearest integer�
unless the value is a an RGBA color component� a DepthRange value� a
depth bu�er clear value� or a normal coordinate� In these cases� the Get
command converts the �oating�point value to an integer according the INT

entry of Table
��� a value not in ���� �� converts to an unde�ned value�

��

Version 1.0 - 1 July 1994

���

If GetFloatv is called� a boolean value is interpreted as either ��
 or
�
�
an integer is coerced to �oating�point� and a double�precision �oating�point
value is converted to single�precision� Analogous conversions are carried
out in the case of GetDoublev� If a value is so large in magnitude that
it cannot be represented with the requested type� then the nearest value
representable using the requested type is returned�

Other commands exist to obtain state variables that are indexed by a
target� These are

void GetClipPlane� enum plane� double eqn�
� 	 �
void GetLightfifgv� enum light� enum value� T data 	 �
void GetMaterialfifgv� enum face� enum value� T data 	 �
void GetTexEnvfifgv� enum env� enum value� T data 	 �
void GetTexGenfifgv� enum coord� enum value� T data 	 �
void GetTexParameterfifgv� enum target� enum value�

T data 	 �
void GetTexLevelParameterfifgv� enum target� int lod�

enum value� T data 	 �
void GetPixelMapfui us fgv� enum map� T data 	 �
void GetMapfifdgv� enum map� enum value� T data 	 �

GetClipPlane always returns four double�precision values in eqn� these
are the coe�cients of the plane equation of plane in eye coordinates �these
coordinates are those that were computed when the plane was speci�ed	�

GetLight places information about value �a symbolic constant	 for light
�also a symbolic constant	 in data� POSITION or SPOT DIRECTION returns val�
ues in eye coordinates �again� these are the coordinates that were computed
when the position or direction was speci�ed	�

GetMaterial� GetTexGen� GetTexEnv� and GetTexParameter

are similar toGetLight� placing information about value for the target indi�
cated by their �rst argument into data� The face argument toGetMaterial

must be either FRONT or BACK� indicating the front or back material� respec�
tively� The env argument to GetTexEnv must currently be TEXTURE ENV�
The coord argument to GetTexGen must be one of S� T� R� or Q� For Get

TexGen� EYE LINEAR coe�cients are returned in the eye coordinates that
were computed when the plane was speci�ed� OBJECT LINEAR coe�cients are
returned in object coordinates�

For GetTexParameter and GetTexLevelParameter� target must
currently be either TEXTURE �D or TEXTURE �D� indicating the target from
which information is to be obtained� value is a symbolic value indicating

Version 1.0 - 1 July 1994

��� CHAPTER �� STATE AND STATE REQUESTS

which texture parameter is to be obtained� The lod argument to Get

TexLevelParameter determines which level�of�detail�s state is returned�
If the lod argument is less than zero or if it is larger than the maximum
allowable level�of�detail then the error INVALID VALUE occurs�

For GetPixelMap� the map must be a map name from Table ���� For
GetMap� map must be one of the map types described in section ���� and
value must be one of ORDER� COEFF� or DOMAIN�

GetTexImage is used to obtain texture images�

void GetTexImage� enum tex� int lod� enum format�
enum type� void �img 	 �

It is somewhat di�erent from the other get commands� tex is a symbolic
value indicating which texture is to be obtained� TEXTURE �D indicates a one�
dimensional texture� while TEXTURE �D indicates a two�dimensional texture�
lod is a level�of�detail number� format is a pixel format from Table ����
type is a pixel type from Table ��
� and img is a pointer to a block of
memory� GetTexImage obtains component groups from a texture image
with the indicated level�of�detail �the number of components in a group
is the number of components of the texture� the components are assigned
among R� G� B� and A according to Table ���	 starting with the �rst group
in the �rst row� and continuing by obtaining groups in order from each
row and proceeding from the �rst row to the last� These groups are then
packed and placed in client memory as described in section
���� under
ReadPixels� The row length and number of rows is determined by the
size of the texture image �including any borders	� Calling GetTexImage
with lod less than zero or larger than the maximum allowable causes the
error INVALID VALUE� Calling GetTexImage with format of COLOR INDEX�
STENCIL INDEX� or DEPTH COMPONENT causes the error INVALID ENUM�

The command

void GetPolygonStipple� void �pattern 	 �

obtains the polygon stipple� The pattern is packed into memory according
to the procedure given in section
���� for ReadPixels� it is as if the height
and width passed to that command were both equal to ��� the type were
BITMAP� and the format were COLOR INDEX�

Finally�

ubyte �GetString� enum name 	 �

Version 1.0 - 1 July 1994

���

returns a pointer to a static string describing some aspect of the current
GL connection� The possible values for name are VENDOR� RENDERER� VERSION�
and EXTENSIONS� The format of the string pointed to by the value returned
by GetString is implementation dependent�

The tables on the following pages indicate which state variables are ob�
tained with what commands� State variables that can be obtained using any
of GetBooleanv� GetIntegerv� GetFloatv� or GetDoublev are listed
with just one of these commands ! the one that is most appropriate given
the type of the data to be returned� These state variables cannot be ob�
tained using IsEnabled� However� state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv�
GetIntegerv� GetFloatv� and GetDoublev� State variables for which
any other command is listed as the query command can be obtained only
by using that command�

Unless otherwise indicated� multi�valued state variables return their mul�
tiple values in the same order as they are given as arguments to the com�
mands that set them� For instance� the two DepthRange parameters are
returned in the order n followed by f� Similarly� points for evaluator maps
are returned in the order that they appeared when passed toMap�� Map�

returns Rij in the ��uorder	i � j�th block of values �see page ��� for i� j�
uorder� and Rij 	�

Besides providing a means to obtain the values of state variables� the
GL also provides a means to save and restore groups of state variables� The
PushAttrib and PopAttrib commands are used for this purpose� The
command

void PushAttrib� bitfield mask 	 �

takes a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack� Each constant refers to a group of
state variables� The classi�cation of each variable into a group is indicated
in the following tables of state variables� The command

void PopAttrib� void 	 �

resets the values of those state variables that were saved with the last
PushAttrib� Those not saved remain unchanged� It is an error to pop
an empty stack or push onto a full one� Table ��� shows the attribute
groups with their corresponding symbolic constant names�

The depth of the attribute stack is implementation dependent but must
be at least ��� The state required is potentially �� copies of each state

Version 1.0 - 1 July 1994

��
 CHAPTER �� STATE AND STATE REQUESTS

Attribute Constant

accum�bu�er ACCUM BUFFER BIT

color�bu�er COLOR BUFFER BIT

current CURRENT BIT

depth�bu�er DEPTH BUFFER BIT

enable ENABLE BIT

eval EVAL BIT

fog FOG BIT

hint HINT BIT

lighting LIGHTING BIT

line LINE BIT

list LIST BIT

pixel PIXEL MODE BIT

point POINT BIT

polygon POLYGON BIT

polygon�stipple POLYGON STIPPLE BIT

scissor SCISSOR BIT

stencil�bu�er STENCIL BUFFER BIT

texture TEXTURE BIT

transform TRANSFORM BIT

viewport VIEWPORT BIT

� ALL ATTRIB BITS

Table ���� Attribute groups

Version 1.0 - 1 July 1994

���

variable� �� masks indicating which groups of variables are stored in each
stack entry� and an attribute stack pointer� In the initial state� the attribute
stack is empty�

In the tables that follow� a type is indicated for each variable� Table ���
explains these types� The type actually identi�es all state associated with
the indicated description� in certain cases only a portion of this state is
returned� This is the case with all matrices� where only the top entry on
the stack is returned� with clip planes� where only the selected clip plane is
returned� with parameters describing lights� where only the value pertaining
to the selected light is returned� with textures� where only the selected
texture or texture parameter is returned� and with evaluator maps� where
only the selected map is returned� Finally� a �!� in the attribute column
indicates that the indicated value is not included in any attribute group
�and thus can not be pushed or popped with PushAttrib or PopAttrib	�

Version 1.0 - 1 July 1994

��� CHAPTER �� STATE AND STATE REQUESTS

Type code Explanation

B Boolean

C Color ��oating�point R� G� B� and A values	

CI Color index ��oating�point index value	

T Texture coordinates ��oating�point s� t� r� q
values	

N Normal coordinates ��oating�point x� y� z
values	

V Vertex� including associated data

Z Integer

Z� Non�negative integer

Zk � Zk� k�valued integer �k� indicates k is minimum	

R Floating�point number

R� Non�negative �oating�point number

Rk k�tuple of �oating�point numbers

P Position �x� y� z� w �oating�point coordinates	

D Direction �x� y� z �oating�point coordinates	

M

�
 �oating�point matrix

I Image

A Attribute stack entry� including mask

n� type n copies of type type �n� indicates n is
minimum	

Table ���� State variable types

Version 1.0 - 1 July 1994

���

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

�

Z
�
�

�

�

W
h
en
��
�
�
in
d
ic
at
es

b
e
g
in
�
e
n
d
ob
je
ct

��
��
�

�

�

V

�

�

P
re
v
io
u
s
ve
rt
ex
in

B
e
g
in
�
E
n
d
li
n
e

��
��
�

�

�

B

�

�

In
d
ic
at
es
if
li
n
e
�v
e
rt
e
x

is
th
e
�
rs
t

��
��
�

�

�

V

�

�

F
ir
st
ve
rt
ex
of
a

B
e
g
in
�
E
n
d
li
n
e
lo
o
p

��
��
�

�

�

Z
�

�

�

L
in
e
st
ip
p
le
co
u
n
te
r

��
�

�

�

n
�
V

�

�

V
er
ti
ce
s
in
si
d
e
o
f

B
e
g
in
�
E
n
d
p
o
ly
g
o
n

��
��
�

�

�

Z
�

�

�

N
u
m
b
er
of

p
o
ly
g
o
n
�v
e
rt
ic
e
s

��
��
�

�

�

�
�
V

�

�

P
re
v
io
u
s
tw
o
ve
rt
ic
es

in
a
B
e
g
in
�
E
n
d

tr
ia
n
g
le
st
ri
p

��
��
�

�

�

Z
�

�

�

N
u
m
b
er
of
ve
rt
ic
es
so

fa
r
in
tr
ia
n
gl
e
st
ri
p
�
��

��
or
m
or
e

��
��
�

�

�

Z
�

�

�

T
ri
an
gl
e
st
ri
p
A
�B

ve
rt
ex
p
oi
n
te
r

��
��
�

�

�

�
�
V

�

�

V
er
ti
ce
s
of
th
e
q
u
ad

u
n
d
er
co
n
st
ru
ct
io
n

��
��
�

�

�

Z
�

�

�

N
u
m
b
er
of
ve
rt
ic
es
so

fa
r
in
q
u
ad
st
ri
p
�
��
��

��
or
m
or
e

��
��
�

�

Table ���� GL Internal begin�end state variables �inaccessible�

Version 1.0 - 1 July 1994

��� CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

C
U
R
R
E
N
T

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
�

G
e
tF
lo
a
tv

��
��
��
�

C
u
rr
en
t
co
lo
r

��
�

cu
rr
en
t

C
U
R
R
E
N
T

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
�

G
e
tF
lo
a
tv

�

C
u
rr
en
t
co
lo
r
in
d
ex

��
�

cu
rr
en
t

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

��
��
��
�

C
u
rr
en
t
te
x
tu
re

co
or
d
in
at
es

��
�

cu
rr
en
t

C
U
R
R
E
N
T

N
O
R
M
A
L

N

G
e
tF
lo
a
tv

��
��
�

C
u
rr
en
t
n
or
m
al

��
�

cu
rr
en
t

�

C

�

�

C
ol
or
a
ss
o
ci
at
ed
w
it
h

la
st
ve
rt
ex

��
�

�

�

C
I

�

�

C
ol
or
in
d
ex
as
so
ci
at
ed

w
it
h
la
st
v
er
te
x

��
�

�

�

T

�

�

T
ex
tu
re
co
or
d
in
at
es

as
so
ci
at
ed
w
it
h
la
st

ve
rt
ex

��
�

�

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

R
�

G
e
tF
lo
a
tv

��
��
��
�

C
u
rr
en
t
ra
st
er
p
os
it
io
n

��
��

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

D
IS
T
A
N
C
E

R
�

G
e
tF
lo
a
tv

�

C
u
rr
en
t
ra
st
er
d
is
ta
n
ce

��
��

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
�

G
e
tF
lo
a
tv

��
��
��
�

C
ol
or
a
ss
o
ci
at
ed
w
it
h

ra
st
er
p
os
it
io
n

�
��
�

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
�

G
e
tF
lo
a
tv

�

C
ol
or
in
d
ex
as
so
ci
at
ed

w
it
h
ra
st
er
p
o
si
ti
on

�
��
�

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

��
��
��
�

T
ex
tu
re
co
or
d
in
at
es

as
so
ci
at
ed
w
it
h
ra
st
er

p
os
it
io
n

�
��
�

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

V
A
L
ID

B

G
e
tB
o
o
le
a
n
v

T
ru
e

R
as
te
r
p
os
it
io
n
va
li
d

b
it

�
��
�

cu
rr
en
t

E
D
G
E

F
L
A
G

B

G
e
tB
o
o
le
a
n
v

T
ru
e

E
d
ge
�
ag

��
��
�

cu
rr
en
t

Table ���� Current Values and Associated Data

Version 1.0 - 1 July 1994

���

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

M
O
D
E
L
V
IE
W

M
A
T
R
IX

��
�
�
M
�

G
e
tF
lo
a
tv

Id
en
ti
ty

M
o
d
el
�v
ie
w
m
at
ri
x

st
ac
k

��
��
�

�

P
R
O
J
E
C
T
IO
N

M
A
T
R
IX

�
�
�
M
�

G
e
tF
lo
a
tv

Id
en
ti
ty

P
ro
je
ct
io
n
m
at
ri
x

st
ac
k

��
��
�

�

T
E
X
T
U
R
E

M
A
T
R
IX

�
�
�
M
�

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
at
ri
x
st
ac
k

��
��
�

�

V
IE
W

P
O
R
T

�
�
Z

G
e
tI
n
te
g
e
rv

se
e
��
��
�

V
ie
w
p
or
t
or
ig
in
�

ex
te
n
t

��
��
�

v
ie
w
p
or
t

D
E
P
T
H

R
A
N
G
E

�
�
R
�

G
e
tF
lo
a
tv

��
�

D
ep
th
ra
n
ge
n
ea
r
�

fa
r

��
��
�

v
ie
w
p
or
t

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

M
o
d
el
�v
ie
w
m
at
ri
x

st
ac
k
p
oi
n
te
r

��
��
�

�

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

P
ro
je
ct
io
n
m
at
ri
x

st
ac
k
p
oi
n
te
r

��
��
�

�

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

T
ex
tu
re
m
at
ri
x
st
ac
k

p
oi
n
te
r

��
��
�

�

M
A
T
R
IX

M
O
D
E

Z
�

G
e
tI
n
te
g
e
rv

M
O
D
E
L
V
I
E
W

C
u
rr
en
t
m
at
ri
x
m
o
d
e

��
��
�

tr
an
sf
or
m

N
O
R
M
A
L
IZ
E

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
or
m
al

n
or
m
al
iz
at
io
n
on
�o
�

��
��
�

tr
an
sf
or
m
�e
n
ab
le

C
L
IP

P
L
A
N
E
i

�
�
�
R
�

G
e
tC
li
p
P
la
n
e

��
��
��
�

U
se
r
cl
ip
p
in
g
p
la
n
e

co
e�
ci
en
ts

��
��

tr
an
sf
or
m

C
L
IP

P
L
A
N
E
i

�
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

x
th
u
se
r
cl
ip
p
in
g
p
la
n
e

en
ab
le
d

��
��

tr
an
sf
or
m
�e
n
ab
le

Table ���� Transformation state

Version 1.0 - 1 July 1994

�

 CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

F
O
G

C
O
L
O
R

C

G
e
tF
lo
a
tv

��
��
��
�

F
og
co
lo
r

�
��

fo
g

F
O
G

IN
D
E
X

I

G
e
tF
lo
a
tv

�

F
og
in
d
ex

�
��

fo
g

F
O
G

D
E
N
S
IT
Y

R

G
e
tF
lo
a
tv

��
�

E
x
p
on
en
ti
al
fo
g

d
en
si
ty

��
�

fo
g

F
O
G

S
T
A
R
T

R

G
e
tF
lo
a
tv

��
�

L
in
ea
r
fo
g
st
ar
t

��
�

fo
g

F
O
G

E
N
D

R

G
e
tF
lo
a
tv

��
�

L
in
ea
r
fo
g
en
d

��
�

fo
g

F
O
G

M
O
D
E

Z
�

G
e
tI
n
te
g
e
rv

E
X
P

F
og
m
o
d
e

�
��

fo
g

F
O
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
fo
g
en
ab
le
d

��
�

fo
g�
en
ab
le

S
H
A
D
E

M
O
D
E
L

Z
�

G
e
tI
n
te
g
e
rv

S
M
O
O
T
H

S
h
a
d
e
M
o
d
e
l
se
tt
in
g

��
��
��

li
g
h
ti
n
g

Table ���� Coloring

Version 1.0 - 1 July 1994

�
�

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

L
IG
H
T
IN
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
gh
ti
n
g
is

en
ab
le
d

��
��
��

li
gh
ti
n
g�
en
ab
le

C
O
L
O
R

M
A
T
E
R
IA
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r
tr
ac
k
in
g

is
en
ab
le
d

��
��
��

li
gh
ti
n
g�
en
ab
le

C
O
L
O
R

M
A
T
E
R
IA
L

P
A
R
A
M
E
T
E
R

Z
�

G
e
tI
n
te
g
e
rv

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
at
er
ia
l
p
ro
p
er
ti
es

tr
ac
k
in
g
cu
rr
en
t
co
lo
r

��
��
��

li
g
h
ti
n
g

C
O
L
O
R

M
A
T
E
R
IA
L

F
A
C
E

Z
�

G
e
tI
n
te
g
e
rv

F
R
O
N
T
A
N
D
B
A
C
K

F
ac
e�
s�
a�
ec
te
d
b
y

co
lo
r
tr
ac
k
in
g

��
��
��

li
g
h
ti
n
g

A
M
B
IE
N
T

�
�
C

G
e
tM
a
te
ri
a
lf
v

��
��
��
��
��
��
��
��
�

A
m
b
ie
n
t
m
at
er
ia
l
co
lo
r

��
��
��

li
gh
ti
n
g

D
IF
F
U
S
E

�
�
C

G
e
tM
a
te
ri
a
lf
v

��
�

��
�

��
�

��
��
�

D
i�
u
se
m
at
er
ia
l
co
lo
r

��
��
��

li
gh
ti
n
g

S
P
E
C
U
L
A
R

�
�
C

G
e
tM
a
te
ri
a
lf
v

��
��
��
��
��
��
��
��
�

S
p
ec
u
la
r
m
at
er
ia
l
co
lo
r

��
��
��

li
gh
ti
n
g

E
M
IS
S
IO
N

�
�
C

G
e
tM
a
te
ri
a
lf
v

��
��
��
��
��
��
��
��
�

E
m
is
si
ve
m
at
�
co
lo
r

��
��
��

li
gh
ti
n
g

S
H
IN
IN
E
S
S

�
�
R

G
e
tM
a
te
ri
a
lf
v

��
�

S
p
ec
u
la
r
ex
p
on
en
t
of

m
at
er
ia
l

��
��
��

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L

A
M
B
IE
N
T

C

G
e
tF
lo
a
tv

��
��
��
��
��
��
��
��
�

A
m
b
ie
n
t
sc
en
e
co
lo
r

��
��
��

li
gh
ti
n
g

L
IG
H
T

M
O
D
E
L

L
O
C
A
L

V
IE
W

E
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
ie
w
er
is
lo
ca
l

��
��
��

li
gh
ti
n
g

L
IG
H
T

M
O
D
E
L

T
W

O

S
ID
E

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

U
se
tw
o�
si
d
ed
li
gh
ti
n
g

��
��
��

li
gh
ti
n
g

A
M
B
IE
N
T

�
�
C

G
e
tL
ig
h
tf
v

��
��
��
��
��
��
��
��
�

A
m
b
ie
n
t
in
te
n
si
ty
o
f

li
gh
t
i

��
��
��

li
g
h
ti
n
g

D
IF
F
U
S
E

�
�
C

G
e
tL
ig
h
tf
v

se
e
�
�

D
i�
u
se
in
te
n
si
ty
of

li
gh
t
i

��
��
��

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

�
�
C

G
e
tL
ig
h
tf
v

se
e
�
�

S
p
ec
u
la
r
in
te
n
si
ty
o
f

li
gh
t
i

��
��
��

li
g
h
ti
n
g

P
O
S
IT
IO
N

�
�
P

G
e
tL
ig
h
tf
v

��
��
��
��
��
��
��
��
�

P
os
it
io
n
of
li
gh
t
i

��
��
��

li
gh
ti
n
g

C
O
N
S
T
A
N
T

A
T
T
E
N
U
A
T
IO
N

�
�
R
�

G
e
tL
ig
h
tf
v

��
�

C
on
st
an
t
at
te
n
�
fa
ct
or

��
��
��

li
g
h
ti
n
g

L
IN
E
A
R

A
T
T
E
N
U
A
T
IO
N

�
�
R
�

G
e
tL
ig
h
tf
v

��
�

L
in
ea
r
at
te
n
�
fa
ct
or

��
��
��

li
g
h
ti
n
g

Q
U
A
D
R
A
T
IC

A
T
T
E
N
U
A
T
IO
N

�
�
R
�

G
e
tL
ig
h
tf
v

��
�

Q
u
ad
ra
ti
c
at
te
n
�

fa
ct
or

��
��
��

li
g
h
ti
n
g

S
P
O
T

D
IR
E
C
T
IO
N

�
�
D

G
e
tL
ig
h
tf
v

��
��
��
��
��
��
��

S
p
ot
li
gh
t
d
ir
ec
ti
on
of

li
gh
t
i

��
��
��

li
g
h
ti
n
g

S
P
O
T

E
X
P
O
N
E
N
T

�
�
R
�

G
e
tL
ig
h
tf
v

��
�

S
p
ot
li
gh
t
ex
p
on
en
t
of

li
gh
t
i

��
��
��

li
g
h
ti
n
g

S
P
O
T

C
U
T
O
F
F

�
�
R
�

G
e
tL
ig
h
tf
v

�

��
�

S
p
ot
�
an
gl
e
of
li
gh
t
i

��
��
��

li
g
h
ti
n
g

L
IG
H
T
i

�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
gh
t
i
en
ab
le
d

��
��
��

li
g
h
ti
n
g�
en
ab
le

C
O
L
O
R

IN
D
E
X
E
S

�
�
�
�
R

G
e
tF
lo
a
tv

��
��
�

a
m

�
d
m

�
an
d
s
m

fo
r

co
lo
r
in
d
ex
li
gh
ti
n
g

��
��
��

li
g
h
ti
n
g

Table � � Lighting �see also Table 	 � for defaults�

Version 1.0 - 1 July 1994

�
� CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

P
O
IN
T

S
IZ
E

R
�

G
e
tF
lo
a
tv

��
�

P
oi
n
t
si
ze

��
�

p
oi
n
t

P
O
IN
T

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
oi
n
t
an
ti
al
ia
si
n
g
on

��
�

p
oi
n
t�
en
ab
le

L
IN
E

W

ID
T
H

R
�

G
e
tF
lo
a
tv

��
�

L
in
e
w
id
th

��
�

li
n
e

L
IN
E

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
an
ti
al
ia
si
n
g
o
n

��
�

li
n
e�
en
ab
le

L
IN
E

S
T
IP
P
L
E

P
A
T
T
E
R
N

Z
�

G
e
tI
n
te
g
e
rv

�	
s

L
in
e
st
ip
p
le

��
��
�

li
n
e

L
IN
E

S
T
IP
P
L
E

R
E
P
E
A
T

Z
�

G
e
tI
n
te
g
e
rv

�

L
in
e
st
ip
p
le
re
p
ea
t

��
��
�

li
n
e

L
IN
E

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
st
ip
p
le
en
ab
le

��
��
�

li
n
e�
en
ab
le

C
U
L
L

F
A
C
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
ol
y
go
n
cu
ll
in
g

en
ab
le
d

�
�

��

p
ol
y
go
n
�e
n
ab
le

C
U
L
L

F
A
C
E

M
O
D
E

Z
�

G
e
tI
n
te
g
e
rv

B
A
C
K

C
u
ll
fr
on
t�
b
ac
k
fa
ci
n
g

p
o
ly
go
n
s

�
�

��

p
ol
y
go
n

F
R
O
N
T

F
A
C
E

Z
�

G
e
tI
n
te
g
e
rv

C
C
W

P
ol
y
go
n
fr
on
tf
ac
e

C
W
�C
C
W

in
d
ic
at
or

�
�

��

p
ol
y
go
n

P
O
L
Y
G
O
N

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
ol
y
go
n
an
ti
al
ia
si
n
g

on

��

p
ol
y
go
n
�e
n
ab
le

P
O
L
Y
G
O
N

M
O
D
E

�
�
Z
�

G
e
tI
n
te
g
e
rv

F
I
L
L

P
ol
y
go
n
ra
st
er
iz
at
io
n

m
o
d
e
�f
ro
n
t
�
b
a
ck
�

�
�

��

p
ol
y
go
n

�

I

G
e
tP
o
ly
g
o
n
S
ti
p
p
le

�	
s

P
ol
y
go
n
st
ip
p
le

��

p
ol
y
go
n
�s
ti
p
p
le

P
O
L
Y
G
O
N

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
ol
y
go
n
st
ip
p
le
en
ab
le

��

�
�

p
ol
y
go
n
�e
n
ab
le

Table ��
� Rasterization

Version 1.0 - 1 July 1994

�
�

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

T
E
X
T
U
R
E

x

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
�D
te
x
tu
ri
n
g

en
ab
le
d
�x
is
�D
or

�D
�

��

�
�

te
x
tu
re
�e
n
ab
le

T
E
X
T
U
R
E

n
�
I

G
e
tT
e
x
Im
a
g
e

se
e
��

x
�D
te
x
tu
re
im
ag
e
at

l�
o�
d
�
i

��

�

T
E
X
T
U
R
E

W

ID
T
H

n
�
Z
�

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

�

x
�D
te
x
tu
re
im
ag
e
i	
s

w
id
th

��

�

T
E
X
T
U
R
E

H
E
IG
H
T

n
�
Z
�

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

�

x
�D
te
x
tu
re
im
ag
e
i	
s

h
ei
gh
t

��

�

T
E
X
T
U
R
E

B
O
R
D
E
R

n
�
Z
�

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

�

x
�D
te
x
tu
re
im
ag
e
i	
s

b
or
d
er
w
id
th

��

�

T
E
X
T
U
R
E

C
O
M
P
O
N
E
N
T
S

n
�
Z
�

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

�

T
ex
tu
re
im
ag
e

co
m
p
on
en
ts

��

�

T
E
X
T
U
R
E

B
O
R
D
E
R

C
O
L
O
R

�
�
C

G
e
tT
e
x
P
a
ra
m
e
te
r

��
��
��
�

T
ex
tu
re
b
or
d
er
co
lo
r

�
�

te
x
tu
re

T
E
X
T
U
R
E

M
IN

F
IL
T
E
R

�
�
Z
�

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
��

T
ex
tu
re
m
in
i�
ca
ti
on

fu
n
ct
io
n

��

�
�

te
x
tu
re

T
E
X
T
U
R
E

M
A
G

F
IL
T
E
R

�
�
Z
�

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
��

T
ex
tu
re
m
ag
n
i�
ca
ti
on

fu
n
ct
io
n

��

�
�

te
x
tu
re

T
E
X
T
U
R
E

W

R
A
P

x

�
�
Z
�

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
�x

is
S
or
T
�

��

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

M
O
D
E

Z
�

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
ap
p
li
ca
ti
on

fu
n
ct
io
n

��

�
�

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

C

G
e
tT
e
x
E
n
v
fv

��
��
��
�

T
ex
tu
re
en
v
ir
on
m
en
t

co
lo
r

��

�
�

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
ge
n
en
ab
le
d
�x
is

S
�
T
�
R
�
or
Q
�

��
��
�

te
x
tu
re
�e
n
ab
le

E
Y
E

L
IN
E
A
R

�
�
R
�

G
e
tT
e
x
G
e
n
fv

se
e
��
��
�

T
ex
ge
n
p
la
n
e
eq
u
at
io
n

co
e�
ci
en
ts

��
��
�

te
x
tu
re

O
B
J
E
C
T

L
IN
E
A
R

�
�
R
�

G
e
tT
e
x
G
e
n
fv

se
e
��
��
�

T
ex
ge
n
o
b
je
ct
li
n
ea
r

co
e�
ci
en
ts

��
��
�

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

�
�
Z
�

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
ge
n

��
��
�

te
x
tu
re

Table ���� Texturing

Version 1.0 - 1 July 1994

�

 CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

S
C
IS
S
O
R

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
ci
ss
or
in
g
en
ab
le
d

��
��
�

sc
is
so
r�
en
ab
le

S
C
IS
S
O
R

B
O
X

�
�
Z

G
e
tI
n
te
g
e
rv

se
e
��
��
�

S
ci
ss
or
b
ox

��
��
�

sc
is
so
r

S
T
E
N
C
IL

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
te
n
ci
li
n
g
en
ab
le
d

��
��
�

st
en
ci
l�
b
u
�
er
�e
n
ab
le

S
T
E
N
C
IL

F
U
N
C

Z
�

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

S
te
n
ci
l
fu
n
ct
io
n

��
��
�

st
en
ci
l�
b
u
�
er

S
T
E
N
C
IL

V
A
L
U
E

M
A
S
K

Z
�

G
e
tI
n
te
g
e
rv

�	
s

S
te
n
ci
l
m
as
k

��
��
�

st
en
ci
l�
b
u
�
er

S
T
E
N
C
IL

R
E
F

Z
�

G
e
tI
n
te
g
e
rv

�

S
te
n
ci
l
re
fe
re
n
ce
va
lu
e

��
��
�

st
en
ci
l�
b
u
�
er

S
T
E
N
C
IL

F
A
IL

Z
�

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
fa
il
ac
ti
on

��
��
�

st
en
ci
l�
b
u
�
er

S
T
E
N
C
IL

P
A
S
S

D
E
P
T
H

F
A
IL

Z
�

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

fa
il
ac
ti
on

��
��
�

st
en
ci
l�
b
u
�
er

S
T
E
N
C
IL

P
A
S
S

D
E
P
T
H

P
A
S
S

Z
�

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

p
as
s
ac
ti
on

��
��
�

st
en
ci
l�
b
u
�
er

A
L
P
H
A

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

A
lp
h
a
te
st
en
ab
le
d

��
��
�

co
lo
r�
b
u
�
er
�e
n
ab
le

A
L
P
H
A

T
E
S
T

F
U
N
C

Z
�

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

A
lp
h
a
te
st
fu
n
ct
io
n

��
��
�

co
lo
r�
b
u
�
er

A
L
P
H
A

T
E
S
T

R
E
F

R
�

G
e
tI
n
te
g
e
rv

�

A
lp
h
a
te
st
re
fe
re
n
ce

va
lu
e

��
��
�

co
lo
r�
b
u
�
er

D
E
P
T
H

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

D
ep
th
b
u
�
er
en
ab
le
d

��
��

d
ep
th
�b
u
�
er
�e
n
ab
le

D
E
P
T
H

F
U
N
C

Z
�

G
e
tI
n
te
g
e
rv

L
E
S
S

D
ep
th
b
u
�
er
te
st

fu
n
ct
io
n

��
��

d
ep
th
�b
u
�
er

B
L
E
N
D

B

Is
E
n
a
b
le
d

F
a
ls
e

B
le
n
d
in
g
en
ab
le
d

��
��
�

co
lo
r�
b
u
�
er
�e
n
ab
le

B
L
E
N
D

S
R
C

Z
�

G
e
tI
n
te
g
e
rv

O
N
E

B
le
n
d
in
g
so
u
rc
e

fu
n
ct
io
n

��
��
�

co
lo
r�
b
u
�
er

B
L
E
N
D

D
S
T

Z
�

G
e
tI
n
te
g
e
rv

Z
E
R
O

B
le
n
d
in
g
d
es
ti
n
at
io
n

fu
n
ct
io
n

��
��
�

co
lo
r�
b
u
�
er

L
O
G
IC

O
P

B

Is
E
n
a
b
le
d

F
a
ls
e

L
og
ic
op
en
ab
le
d

��
��

co
lo
r�
b
u
�
er
�e
n
ab
le

L
O
G
IC

O
P

M
O
D
E

Z
�
�

G
e
tI
n
te
g
e
rv

C
O
P
Y

L
og
ic
op
fu
n
ct
io
n

��
��

co
lo
r�
b
u
�
er

D
IT
H
E
R

B

Is
E
n
a
b
le
d

T
ru
e

D
it
h
er
in
g
en
ab
le
d

��
��
�

co
lo
r�
b
u
�
er
�e
n
ab
le

Table ���
� Pixel Operations

Version 1.0 - 1 July 1994

�
�

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

D
R
A
W

B
U
F
F
E
R

Z
�
	
�

G
e
tI
n
te
g
e
rv

se
e
��
��
�

B
u
�
er
s
se
le
ct
ed
fo
r

d
ra
w
in
g

��
��
�

co
lo
r�
b
u
�
er

IN
D
E
X

W

R
IT
E
M
A
S
K

Z
�

G
e
tI
n
te
g
e
rv

�
	s

C
ol
or
in
d
ex
w
ri
te
m
as
k

��
��
�

co
lo
r�
b
u
�
er

C
O
L
O
R

W

R
IT
E
M
A
S
K

�
�
B

G
e
tB
o
o
le
a
n
v

T
ru
e

C
ol
or
w
ri
te
en
ab
le
s�
R
�

G
�
B
�
or
A

��
��
�

co
lo
r�
b
u
�
er

D
E
P
T
H

W

R
IT
E
M
A
S
K

B

G
e
tB
o
o
le
a
n
v

T
ru
e

D
ep
th
b
u
�
er
en
ab
le
d

fo
r
w
ri
ti
n
g

��
��
�

d
ep
th
�b
u
�
er

S
T
E
N
C
IL

W

R
IT
E
M
A
S
K

Z
�

G
e
tI
n
te
g
e
rv

�
	s

S
te
n
ci
l
b
u
�
er

w
ri
te
m
as
k

��
��
�

st
en
ci
l�
b
u
�
er

C
O
L
O
R

C
L
E
A
R

V
A
L
U
E

C

G
e
tF
lo
a
tv

��
��
��
�

C
ol
or
b
u
�
er
cl
ea
r

va
lu
e
�R
G
B
A
m
o
d
e�

��
��
�

co
lo
r�
b
u
�
er

IN
D
E
X

C
L
E
A
R

V
A
L
U
E

C
I

G
e
tF
lo
a
tv

�

C
ol
or
b
u
�
er
cl
ea
r
va
lu
e

�c
ol
or
in
d
ex
m
o
d
e�

��
��
�

co
lo
r�
b
u
�
er

D
E
P
T
H

C
L
E
A
R

V
A
L
U
E

R
�

G
e
tI
n
te
g
e
rv

�

D
ep
th
b
u
�
er
cl
ea
r

va
lu
e

��
��
�

d
ep
th
�b
u
�
er

S
T
E
N
C
IL

C
L
E
A
R

V
A
L
U
E

Z
�

G
e
tI
n
te
g
e
rv

�

S
te
n
ci
l
cl
ea
r
va
lu
e

��
��
�

st
en
ci
l�
b
u
�
er

A
C
C
U
M

C
L
E
A
R

V
A
L
U
E

�
�
R
�

G
e
tF
lo
a
tv

�

A
cc
u
m
u
la
ti
on
b
u
�
er

cl
ea
r
va
lu
e

��
��
�

ac
cu
m
�b
u
�
er

Table ����� Framebu�er Control

Version 1.0 - 1 July 1994

�
� CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

U
N
P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
al
u
e
of

U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

��
�

�

U
N
P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
al
u
e
of

U
N
P
A
C
K
L
S
B
F
I
R
S
T

��
�

�

U
N
P
A
C
K

R
O
W

L
E
N
G
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

��
�

�

U
N
P
A
C
K

S
K
IP

R
O
W

S

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

U
N
P
A
C
K
S
K
I
P
R
O
W
S

��
�

�

U
N
P
A
C
K

S
K
IP

P
IX
E
L
S

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

��
�

�

U
N
P
A
C
K

A
L
IG
N
M
E
N
T

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

��
�

�

P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
al
u
e
of

P
A
C
K
S
W
A
P
B
Y
T
E
S

��
�

�

P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
al
u
e
of

P
A
C
K
L
S
B
F
I
R
S
T

��
�

�

P
A
C
K

R
O
W

L
E
N
G
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

P
A
C
K
R
O
W
L
E
N
G
T
H

��
�

�

P
A
C
K

S
K
IP

R
O
W

S

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

P
A
C
K
S
K
I
P
R
O
W
S

��
�

�

P
A
C
K

S
K
IP

P
IX
E
L
S

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

P
A
C
K
S
K
I
P
P
I
X
E
L
S

��
�

�

P
A
C
K

A
L
IG
N
M
E
N
T

Z
�

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of

P
A
C
K
A
L
I
G
N
M
E
N
T

��
�

�

Table ���	� Pixels

Version 1.0 - 1 July 1994

�
�

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

M
A
P

C
O
L
O
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
co
lo
rs
ar
e

m
ap
p
ed

��
�

p
ix
el

M
A
P

S
T
E
N
C
IL

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
st
en
ci
l
va
lu
es

ar
e
m
ap
p
ed

��
�

p
ix
el

IN
D
E
X

S
H
IF
T

Z

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of
I
N
D
E
X
S
H
I
F
T

�
��

p
ix
el

IN
D
E
X

O
F
F
S
E
T

Z

G
e
tI
n
te
g
e
rv

�

V
al
u
e
of
I
N
D
E
X
O
F
F
S
E
T

�
��

p
ix
el

x

S
C
A
L
E

R

G
e
tF
lo
a
tv

�

V
al
u
e
of
x
S
C
A
L
E
�
x
is

R
E
D
�
G
R
E
E
N
�
B
L
U
E
�

A
L
P
H
A
�
or
D
E
P
T
H

��
�

p
ix
el

x

B
IA
S

R

G
e
tF
lo
a
tv

�

V
al
u
e
of
x
B
I
A
S
�
x
is

on
e
of
R
E
D
�
G
R
E
E
N
�

B
L
U
E
�
A
L
P
H
A
�
or
D
E
P
T
H

��
�

p
ix
el

Z
O
O
M

X

R

G
e
tF
lo
a
tv

��
�

x
zo
om
fa
ct
or

��
�

p
ix
el

Z
O
O
M

Y

R

G
e
tF
lo
a
tv

��
�

y
zo
om
fa
ct
or

��
�

p
ix
el

x

�
��
�
�
R

G
e
tP
ix
e
lM
a
p

�
	s

R
G
B
A
P
ix
e
lM
a
p

tr
an
sl
at
io
n
ta
b
le
s�
x
is

a
m
ap
n
am
e
fr
om

T
ab
le
��
�

��
�

�

x

�
�
��
�
�
Z

G
e
tP
ix
e
lM
a
p

�
	s

In
d
ex
P
ix
e
lM
a
p

tr
an
sl
at
io
n
ta
b
le
s�
x
is

a
m
ap
n
am
e
fr
om

T
ab
le
��
�

��
�

�

x

S
IZ
E

Z
�

G
e
tI
n
te
g
e
rv

�

S
iz
e
of
ta
b
le
x

��
�

�

R
E
A
D

B
U
F
F
E
R

Z
�

G
e
tI
n
te
g
e
rv

se
e
��
��
�

R
ea
d
so
u
rc
e
b
u
�
er

��
�

p
ix
el

Table ����� Pixels �cont��

Version 1.0 - 1 July 1994

�
� CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

O
R
D
E
R

�
�
Z
�
�

G
e
tM
a
p
iv

�

�d
m
ap
or
d
er

�
�

�

O
R
D
E
R

�
�
�
�
Z
�
�

G
e
tM
a
p
iv

��
�

�d
m
ap
or
d
er
s

�
�

�

C
O
E
F
F

�
�

�
�
R
n

G
e
tM
a
p
fv

se
e

�
�

�d
co
n
tr
ol
p
oi
n
ts

�
�

�

C
O
E
F
F

�
�

�
�

�
�
R
n

G
e
tM
a
p
fv

se
e

�
�

�d
co
n
tr
ol
p
oi
n
ts

�
�

�

D
O
M
A
IN

�
�
�
�
R

G
e
tM
a
p
fv

se
e

�
�

�d
d
om
ai
n
en
d
p
oi
n
ts

��

�

D
O
M
A
IN

�
�
�
�
R

G
e
tM
a
p
fv

se
e

�
�

�d
d
om
ai
n
en
d
p
oi
n
ts

��

�

M
A
P
�
x

�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

�d
m
ap
en
ab
le
s�
x
is

m
ap
ty
p
e

�
�

ev
al
�e
n
ab
le

M
A
P
�
x

�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

�d
m
ap
en
ab
le
s�
x
is

m
ap
ty
p
e

�
�

ev
al
�e
n
ab
le

M
A
P
�
G
R
ID

D
O
M
A
IN

�
�
R

G
e
tF
lo
a
tv

��
�

�d
gr
id
en
d
p
oi
n
ts

�
�

ev
a
l

M
A
P
�
G
R
ID

D
O
M
A
IN

�
�
R

G
e
tF
lo
a
tv

��
��
��
�

�d
gr
id
en
d
p
oi
n
ts

��

ev
a
l

M
A
P
�

G
R
ID

S
E
G
M
E
N
T
S

Z
�

G
e
tF
lo
a
tv

�

�d
gr
id
d
iv
is
io
n
s

�
�

ev
a
l

M
A
P
�

G
R
ID

S
E
G
M
E
N
T
S

�
�
Z
�

G
e
tF
lo
a
tv

��
�

�d
gr
id
d
iv
is
io
n
s

�
�

ev
a
l

A
U
T
O

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
au
to
m
at
ic

n
or
m
al
ge
n
er
at
io
n

en
ab
le
d

�
�

ev
al

Table ����� Evaluators �GetMap takes a map name�

Version 1.0 - 1 July 1994

�
�

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

P
E
R
S
P
E
C
T
IV
E

C
O
R
R
E
C
T
IO
N

H
IN
T

Z
�

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
er
sp
ec
ti
ve
co
rr
ec
ti
on

h
in
t

��

h
in
t

P
O
IN
T

S
M
O
O
T
H

H
IN
T

Z
�

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
in
t
sm
o
ot
h
h
in
t

�
�

h
in
t

L
IN
E

S
M
O
O
T
H

H
IN
T

Z
�

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

L
in
e
sm
o
ot
h
h
in
t

�
�

h
in
t

P
O
L
Y
G
O
N

S
M
O
O
T
H

H
IN
T

Z
�

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
ol
y
go
n
sm
o
ot
h
h
in
t

�
�

h
in
t

F
O
G

H
IN
T

Z
�

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

F
og
h
in
t

�
�

h
in
t

Table ����� Hints

Version 1.0 - 1 July 1994

��
 CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

M
A
X

L
IG
H
T
S

Z
�

G
e
tI
n
te
g
e
rv

M
ax
im
u
m
n
u
m
b
er
o
f

li
gh
ts

��
��
��

�

M
A
X

C
L
IP

P
L
A
N
E
S

Z
�

G
e
tI
n
te
g
e
rv

�

M
ax
im
u
m
n
u
m
b
er
o
f

u
se
r
cl
ip
p
in
g
p
la
n
es

��
��

�

M
A
X

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
m
o
d
el
�v
ie
w

st
ac
k
d
ep
th

��
��
�

�

M
A
X

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

M
ax
im
u
m
p
ro
je
ct
io
n

m
at
ri
x
st
ac
k
d
ep
th

��
��
�

�

M
A
X

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

M
ax
im
u
m
n
u
m
b
er

d
ep
th
o
f
te
x
tu
re

m
at
ri
x
st
ac
k

��
��
�

�

S
U
B
P
IX
E
L

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
o
f

su
b
p
ix
el
p
re
ci
si
on
in
x

�
y

�

�

M
A
X

T
E
X
T
U
R
E

S
IZ
E

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
h
ei
gh
t
o
r

w
id
th
o
f
a
te
x
tu
re

im
ag
e
�w
�o
b
or
d
er
s�

��

�

M
A
X

P
IX
E
L

M
A
P

T
A
B
L
E

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
si
ze
o
f
a

P
ix
e
lM
a
p
tr
an
sl
at
io
n

ta
b
le

��
��
�

�

M
A
X

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
se
le
ct
io
n

n
am
e
st
ac
k
d
ep
th

�
�

�

M
A
X

L
IS
T

N
E
S
T
IN
G

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
d
is
p
la
y
li
st

ca
ll
n
es
ti
n
g

�
�

�

M
A
X

E
V
A
L

O
R
D
E
R

Z
�

G
e
tI
n
te
g
e
rv

M
ax
im
u
m
ev
al
u
at
or

p
ol
y
n
om
ia
l
or
d
er

�
�

�

M
A
X

V
IE
W

P
O
R
T

D
IM
S

�
�
Z
�

G
e
tI
n
te
g
e
rv

se
e
��
��
�

M
ax
im
u
m
v
ie
w
p
or
t

d
im
en
si
on
s

��
��
�

�

M
A
X

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

��

M
ax
im
u
m
d
ep
th
o
f
th
e

at
tr
ib
u
te
st
ac
k

�

�

Table ����� Implementation Dependent Values

Version 1.0 - 1 July 1994

���

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

A
U
X

B
U
F
F
E
R
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
a
u
x
il
ia
ry

b
u
�
er
s

��
��
�

�

R
G
B
A

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

�

T
ru
e
if
co
lo
r
b
u
�
er
s

st
or
e
rg
b
a

��
�

�

IN
D
E
X

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

�

T
ru
e
if
co
lo
r
b
u
�
er
s

st
or
e
in
d
ex
es

��
�

�

D
O
U
B
L
E
B
U
F
F
E
R

B

G
e
tB
o
o
le
a
n
v

�

T
ru
e
if
fr
on
t
�
b
ac
k

b
u
�
er
s
ex
is
t

��
��
�

�

S
T
E
R
E
O

B

G
e
tB
o
o
le
a
n
v

�

T
ru
e
if
le
ft
�
ri
gh
t

b
u
�
er
s
ex
is
t

�

�

P
O
IN
T

S
IZ
E

R
A
N
G
E

�
�
R
�

G
e
tF
lo
a
tv

��
�

R
an
ge
�l
o
to
h
i�
of

an
ti
al
ia
se
d
p
oi
n
t
si
ze
s

��
�

�

P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y

R
�

G
e
tF
lo
a
tv

�

A
n
ti
al
ia
se
d
p
oi
n
t
si
ze

gr
an
u
la
ri
ty

��
�

�

L
IN
E

W

ID
T
H

R
A
N
G
E

�
�
R
�

G
e
tF
lo
a
tv

��
�

R
an
ge
�l
o
to
h
i�
of

an
ti
al
ia
se
d
li
n
e
w
id
th
s

��
�

�

L
IN
E

W

ID
T
H

G
R
A
N
U
L
A
R
IT
Y

R
�

G
e
tF
lo
a
tv

�

A
n
ti
al
ia
se
d
li
n
e
w
id
th

gr
an
u
la
ri
ty

��
�

�

Table ����� More Implementation Dependent Values

Version 1.0 - 1 July 1994

��� CHAPTER �� STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

R
E
D

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er
re
d

co
m
p
on
en
t
in
co
lo
r

b
u
�
er
s

�

�

G
R
E
E
N

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

gr
ee
n
co
m
p
on
en
t
in

co
lo
r
b
u
�
er
s

�

�

B
L
U
E

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

b
lu
e
co
m
p
on
en
t
in

co
lo
r
b
u
�
er
s

�

�

A
L
P
H
A

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

al
p
h
a
co
m
p
on
en
t
in

co
lo
r
b
u
�
er
s

�

�

IN
D
E
X

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

in
d
ex
in
co
lo
r
b
u
�
er
s

�

�

D
E
P
T
H

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
d
ep
th

b
u
�
er
p
la
n
es

�

�

S
T
E
N
C
IL

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
st
en
ci
l

p
la
n
es

�

�

A
C
C
U
M

R
E
D

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er
re
d

co
m
p
on
en
t
in
th
e

ac
cu
m
u
la
ti
on
b
u
�
er

�

�

A
C
C
U
M

G
R
E
E
N

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

gr
ee
n
co
m
p
on
en
t
in

th
e
ac
cu
m
u
la
ti
on

b
u
�
er

�

�

A
C
C
U
M

B
L
U
E

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

b
lu
e
co
m
p
on
en
t
in
th
e

ac
cu
m
u
la
ti
on
b
u
�
er

�

�

A
C
C
U
M

A
L
P
H
A

B
IT
S

Z
�

G
e
tI
n
te
g
e
rv

�

N
u
m
b
er
of
b
it
s
p
er

al
p
h
a
co
m
p
on
en
t
in

th
e
ac
cu
m
u
la
ti
on

b
u
�
er

�

�

Table ���
� Implementation Dependent Pixel Depths

Version 1.0 - 1 July 1994

���

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
�

A
tt
ri
b
u
te

L
IS
T

B
A
S
E

Z
�

G
e
tI
n
te
g
e
rv

�

S
et
ti
n
g
of
L
is
tB
a
se

�
�

li
st

L
IS
T

IN
D
E
X

Z
�

G
e
tI
n
te
g
e
rv

�

n
u
m
b
er
of
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
�
�

if
n
on
e

�
�

�

L
IS
T

M
O
D
E

Z
�

G
e
tI
n
te
g
e
rv

�

M
o
d
e
of
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
�

u
n
d
e�
n
ed
if
n
on
e

�
�

�

�

��
�
�
A

�

em
p
ty

A
tt
ri
b
u
te
st
ac
k

�

�

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

A
tt
ri
b
u
te
st
ac
k
p
oi
n
te
r

�

�

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
�

G
e
tI
n
te
g
e
rv

�

N
am
e
st
ac
k
d
ep
th

�
�

�

R
E
N
D
E
R

M
O
D
E

Z
�

G
e
tI
n
te
g
e
rv

R
E
N
D
E
R

R
e
n
d
e
rM
o
d
e
se
tt
in
g

�
�

�

�

Z
�

�

�

S
el
ec
ti
on
b
u
�
er

p
oi
n
te
r

�
�

�

�

Z
�

�

�

S
el
ec
ti
on
b
u
�
er
si
ze

�
�

�

�

Z
�

�

�

F
ee
d
b
ac
k
b
u
�
er

p
oi
n
te
r

�
�

�

�

Z
�

�

�

F
ee
d
b
ac
k
b
u
�
er
si
ze

�
�

�

�

Z
�

�

�

F
ee
d
b
ac
k
ty
p
e

�
�

�

�

n
�
Z
�

G
e
tE
rr
o
r

�

C
u
rr
en
t
er
ro
r
co
d
e�
s�

��

�

�

n
�
B

�

F
a
ls
e

T
ru
e
if
th
er
e
is
a

co
rr
es
p
on
d
in
g
er
ro
r

��

�

Table ����� Miscellaneous

Version 1.0 - 1 July 1994

Appendix A

Invariance

The OpenGL speci�cation is not pixel exact� It therefore does not guarantee
an exact match between images produced by di�erent GL implementations�
However� the speci�cation does specify exact matches� in some cases� for
images produced by the same implementation� The purpose of this appendix
is to identify and provide justi�cation for those cases that require exact
matches�

A�� Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands� For any given GL and framebu�er state vector� and for
any GL command� the resulting GL and framebu�er state must be identical
whenever the command is executed on that initial GL and framebu�er state�

One purpose of repeatability is avoidance of visual artifacts when a
double�bu�ered scene is redrawn� If rendering is not repeatable� swapping
between two bu�ers rendered with the same command sequence may re�
sult in visible changes in the image� Such false motion is distracting to the
viewer� Another reason for repeatability is testability�

Repeatability� while important� is a weak requirement� Given only re�
peatability as a requirement� two scenes rendered with one �small	 polygon
changed in position might di�er at every pixel� Such a di�erence� while
within the law of repeatability� is certainly not within its spirit� Additional
invariance rules are desirable to ensure useful operation�

��

Version 1.0 - 1 July 1994

A��� MULTI�PASS ALGORITHMS ���

A�� Multi�pass Algorithms

Invariance is necessary for a whole set of useful multi�pass algorithms� Such
algorithms render multiple times� each time with a di�erent GL mode vec�
tor� to eventually produce a result in the framebu�er� Examples of these
algorithms include�

� �Erasing� a primitive from the framebu�er by redrawing it� either in
a di�erent color or using the XOR logical operation�

� Using stencil operations to compute capping planes�

On the other hand� invariance rules can greatly increase the complexity
of high�performance implementations of the GL� Even the weak repeatabil�
ity requirement signi�cantly constrains a parallel implementation of the GL�
Because GL implementations are required to implement ALL GL capabili�
ties� not just a convenient subset� those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector� A strong invariance requirement forces the
behavior of the hardware and software modules to be identical� something
that may be very di�cult to achieve �for example� if the hardware does
�oating�point operations with di�erent precision than the software	�

What is desired is a compromise that results in many compliant� high�
performance implementations� and in many software vendors choosing to
port to OpenGL�

A�� Invariance Rules

For a given instantiation of an OpenGL rendering context�

Rule � For any given GL and framebu�er state vector� and for any given
GL command� the resulting GL and framebu�er state must be identical each
time the command is executed on that initial GL and framebu�er state

Rule � Changes to the following state values have no side e�ects �the use
of any other state value is not a�ected by the change��

Required�

� Framebu�er contents �all bitplanes�

� The color bu�ers enabled for writing

Version 1.0 - 1 July 1994

��� APPENDIX A� INVARIANCE

� The values of matrices other than the top�of�stack matrices

� Scissor parameters �other than enable�

� Writemasks �color� index� depth� stencil�

� Clear values �color� index� depth� stencil� accumulation�

� Current values �color� index� normal� texture coords� edge�ag�

� Current raster color� index and texture coordinates

� Material properties �ambient� di�use� specular� emission� shini�
ness�

Strongly suggested�

� Matrix mode

� Matrix stack depths

� Alpha test parameters �other than enable�

� Stencil parameters �other than enable�

� Depth test parameters �other than enable�

� Blend parameters �other than enable�

� Logical operation parameters �other than enable�

� Pixel storage and transfer state

� Evaluator state �except as it a�ects the vertex data generated by
the evaluators�

Corollary � Fragment generation is invariant with respect to the state val�
ues marked with � in Rule �

Corollary � The window coordinates �x� y� and z� of generated fragments
are also invariant with respect to

Required�

� Current values �color� color index� normal� texture coords� edge�
�ag�

� Current raster color� color index� and texture coordinates

� Material properties �ambient� di�use� specular� emission� shini�
ness�

Version 1.0 - 1 July 1994

A��� WHAT ALL THIS MEANS ���

Rule � The arithmetic of each per�fragment operation is invariant except
with respect to parameters that directly control it �the parameters that control
the alpha test� for instance� are the alpha test enable� the alpha test function�
and the alpha test reference value�

Corollary � Images rendered into di�erent color bu�ers� either simultane�
ously or separately using the same command sequence� are pixel identical

�Note that this does not hold between X � pixmaps and color bu�ers� how�
ever
�

A�� What All This Means

Hardware accelerated GL implementations are expected to default to soft�
ware operation when some GL state vectors are encountered� Even the weak
repeatability requirement means� for example� that OpenGL implementa�
tions cannot apply hysteresis to this swap� but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine�

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur� given that the software and hardware ren�
derers are not pixel identical� For example� the switch can be made when
blending is enabled or disabled� but it should not be made when a change
is made to the blending parameters�

Because �oating point values may be represented using di�erent formats
in di�erent renderers �hardware and software	� many OpenGL state values
may change subtly when renderers are swapped� This is the type of state
value change that Rule � seeks to avoid�

�X is a registered trademark of the MIT X Consortium�

Version 1.0 - 1 July 1994

Appendix B

Corollaries

The following observations are derived from the body and the other ap�
pendixes of the speci�cation� Absence of an observation from this list in no
way impugns its veracity�

�� The CURRENT RASTER TEXTURE COORDINATES must be maintained cor�
rectly at all times� including periods while texture mapping is not
enabled� and when the GL is in color index mode�

�� When requested� texture coordinates returned in feedback mode are
always valid� including periods while texture mapping is not enabled�
and when the GL is in color index mode�

�� The error semantics of upward compatible OpenGL revisions may
change� Otherwise� only additions can be made to upward compat�
ible revisions�

� GL query commands are not required to satisfy the semantics of the
Flush or the Finish commands� All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands�

�� Application speci�ed point size and line width must be returned as
speci�ed when queried� Implementation dependent clamping a�ects
the values only while they are in use�

�� Bitmaps and pixel transfers do not cause selection hits�

���

Version 1.0 - 1 July 1994

���

�� The mask speci�ed as the third argument to StencilFunc a�ects the
operands of the stencil comparison function� but has no direct e�ect on
the update of the stencil bu�er� The mask speci�ed by StencilMask

has no e�ect on the stencil comparison function� it limits the e�ect of
the update of the stencil bu�er�

�� Polygon shading is completed before the polygon mode is interpreted�
If the shade model is FLAT� all of the points or lines generated by a
single polygon will have the same color�

�� A display list is just a group of commands and arguments� so errors
generated by commands in a display list must be generated when the
list is executed� If the list is created in COMPILE mode� errors should
not be generated while the list is being created�

�
� RasterPos does not change the current raster index from its default
value in an RGBA mode GL context� Likewise� RasterPos does not
change the current raster color from its default value in a color index
GL context� Both the current raster index and the current raster
color can be queried� however� regardless of the color mode of the GL
context�

��� A material property that is attached to the current color via Color

Material always takes the value of the current color� Attempts to
change that material property via Material calls have no e�ect�

��� Material and ColorMaterial can be used to modify the RGBA ma�
terial properties� even in a color index context� Likewise� Material
can be used to modify the color index material properties� even in an
RGBA context�

��� Their is no atomicity requirement for OpenGL rendering commands�
even at the fragment level�

�
� Because rasterization of non�antialiased polygons is point sampled�
polygons that have no area generate no fragments when they are ras�
terized in FILLmode� and the fragments generated by the rasterization
of �narrow� polygons may not form a continuous array�

��� OpenGL does not force left� or right�handedness on any of its coor�
dinates systems� Consider� however� the following conditions� ��	 the
object coordinate system is right�handed� ��	 the only commands used

Version 1.0 - 1 July 1994

��
 APPENDIX B� COROLLARIES

to manipulate the model�view matrix are Scale �with positive scaling
values only	� Rotate� and Translate� ��	 exactly one of either Frus

tum or Ortho is used to set the projection matrix� �
	 the near value
is less than the far value for DepthRange� If these conditions are all
satis�ed� then the eye coordinate system is right�handed and the clip�
normalized device� and window coordinate systems are left�handed�

��� ColorMaterial has no e�ect on color index lighting�

��� �No pixel dropouts or duplicates�	 Let two polygons share an identical
edge �that is� there exist vertices A and B of an edge of one polygon�
and vertices C and D of an edge of the other polygon� and the coordi�
nates of vertex A �resp� B	 are identical to those of vertex C �resp� D	�
and the state of the the coordinate transfomations is identical when
A� B� C� and D are speci�ed	� Then� when the fragments produced
by rasterization of both polygons are taken together� each fragment
intersecting the interior of the shared edge is produced exactly once�

Version 1.0 - 1 July 1994

Index of GL calls

Accum� �
�
AlphaFunc� ��

Begin� ��� ��� ��� ��!�
� ���
��
��� ��� �
� ��� ��� ����
���� ��

Bitmap� ��� ��
BlendFunc� ��

CallList� �
� ���� ���
CallLists� �
� ���
Clear� �

� �
�
ClearAccum� �
�
ClearColor� �

ClearDepth� �
�
ClearIndex� �
�
ClearStencil� �
�
ClipPlane� ��
Color� �
� ��� ���
�
Color�� ��
Color
� ��
Colorb� ��
Colorf� ��
Colori� ��
ColorMask� �
�
ColorMaterial�
��
��
�� ���
Colors� ��
Colorub� ���
�
Colorui� ���
�
Colorus� ���
�
CopyPixels� ��!��� �
�� ���� ����

���

CullFace� ��� �

DeleteLists� ���
DepthFunc� ��
DepthMask� �

DepthRange� �
� ��
� ���� ��

Disable� ��� ��� ��� ���
�� ��� ���

��� ��� ��� ��� �
� ��!���
�

� ���� ���

DrawBu�er� �
�� �
�

DrawPixels� ��� ��!�
� ��!��� �
��
��
� ���� ���� ���

EdgeFlag� ��� �

EdgeFlagv� ��
Enable� ��� ��� ��� ���
�� ��� ���

��� ��� ��� ��� �
� ��!���
�

� ���� ���� ��

End� ��� ��!�
� ���
�� ��� ��� ���
���� ���� ��

EndList� ���
EvalCoord� �
� ���

EvalCoord�� ���� ���� ���
EvalCoord�d� ���
EvalCoord�f� ���
EvalCoord�� ���� ���� ��

EvalMesh�� ���
EvalMesh�� ���� ���
EvalPoint� �

EvalPoint�� ���
EvalPoint�� ���

���

Version 1.0 - 1 July 1994

��� INDEX

FeedbackBu�er� ���� ��
� ���
Finish� ���� ���� ���
Flush� ���� ���� ���
Fog� �
� ��
FrontFace�
�� ��
Frustum� ��� ��� ��

GenLists� ���
Get� ��� ���� ��

GetBooleanv� ��
� ���
GetClipPlane� ���
GetDoublev� ��
� ���� ���
GetError� ��� ��
GetFloatv� ��
� ���� ���
GetIntegerv� ��
� ���
GetLight� ���
GetMap� ���� ���
GetMaterial� ���
GetPixelMap� ���� ���
GetPolygonStipple� ���
GetString� ���� ���
GetTexEnv� ���
GetTexGen� ���
GetTexImage� ���
GetTexLevelParameter� ���� ���
GetTexParameter� ���

Hint� ���

Index� �
� ��
IndexMask� �
�� �

InitNames� ��
� ���
IsEnabled� ���� ��
� ���
IsList� ���

Light�
�!

LightModel�
��

LineStipple� ��
LineWidth� ��
ListBase� ���� ���

LoadIdentity� ��
LoadMatrix� ��� ��
LoadName� ���
LogicOp� �

� �
�

Map�� ���� ���� ���
Map�� ���� ���� ���
MapGrid�� ���
MapGrid�� ���
Material� �
�
�!

�
�� ���
MatrixMode� ��
MultMatrix� ��� ��

NewList� ���� ���
Normal� �
� ��
Normal�� �� ��� ��
Normal�d� �
Normal�dv� �
Normal�f� �
Normal�fv� �

Ortho� ��� ��� ��

PassThrough� ��

PixelMap� ��� ��� ��� �
�� ���
PixelStore� ��!��� ��� �
�� ����

���
PixelTransfer� ��� ��� ��� �
�� ���
PixelZoom� ��
PointSize� ��
PolygonMode� ��� ��� ���� ���
PolygonStipple� ��
PopAttrib� ���� ���
PopMatrix� ��
PopName� ��
� ���
PushAttrib� ���� ���
PushMatrix� ��
PushName� ��
� ���

RasterPos� �
� ���� ���

Version 1.0 - 1 July 1994

INDEX ���

RasterPos�� ��
RasterPos�� ��
RasterPos
� ��
ReadBu�er� �
�� ���
ReadPixels� ��!��� ��!�
� �
�!

�
�� ���� ���� ���
Rect� ��� ��
RenderMode� ���!��
� ���
Rotate� ��� ��

Scale� ��� ��� ��

Scissor� ��
SelectBu�er� ���� ���� ���
ShadeModel�
�
StencilFunc� ��� ��� ���
StencilMask� �

� �
�� ���
StencilOp� ��� ��

TexCoord� �

TexCoord�� ��
TexCoord�� ��
TexCoord�� ��
TexCoord
� ��
TexEnv� ��
TexGen� �
� ��
TexImage�D� �
� ��� ��
TexImage�D� ��!��� ��
TexParameter� ��
Translate� ��� ��� ��

Vertex� �� �
� ��� ���
Vertex�� �
� ��
Vertex�sv� �
Vertex�� �

Vertex�f� �
Vertex
� �

Viewport� ��

