The OpenGL™ Graphics System:

A Specification
(Version 1.0)

Mark Segal
Kurt Akeley

Editor:

Chris Frazier

Version 1.0 - 1 July 1994



Copyright (O 1992, 1993, 1994 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a trademark of Silicon Graphics, Inc.

Version 1.0 - 1 July 1994



Contents

1 Introduction

1.1 What is the OpenGL Graphics System? .
1.2 Programmer’s View of OpenGL . . . . . .
1.3 Implementor’s View of OpenGL . . . . . .
14 Our View . .. ... .. ... ... ...

2 OpenGL Operation

2.1 OpenGL Fundamentals . .. ... .. ..
2.2 GLState ... ... oo
2.3 GL Command Syntax . ... ... ....
2.4 Basic GL Operation . . ... ... ....
25 GLErrors . .. ... oL
2.6 Begin/End Paradigm . . . ... ... ...
2.6.1 Begin and End Objects . . .. ..
2.6.2 Polygon Edges . ... ... ....
2.6.3 GL Commands within Begin/End
2.7 Vertex Specification . . ... ... ...
2.8 Rectangles . . . ... ... ... ...
2.9 Coordinate Transformations . . . . . . . .
2.9.1 Controlling the Viewport . . . ..
2.9.2 Matrices . . . .. ..o
2.9.3 Normal Transformation . ... ..
2.9.4  Generating texture coordinates . .
2.10 Clipping . . . . . . o oo oo
2.11 Current Raster Position . . . ... . ...
2.12 Colors and Coloring . . . .. ... .. ..
2.12.1 Lighting . . . .. ... ... ....
2.12.2 Lighting Parameter Specification .

Version 1.0 - 1 July 1994



ii CONTENTS
2.12.3 ColorMaterial . . .. ... ... ... ........ 43
2.12.4 Lighting State . . . . . ... ... ... L. 46
2.12.5 Color Index Lighting . . . . ... ... ... ...... 46
2.12.6 Clamping or Masking . . .. ... ... ... ..... 47
2.12.7 Flatshading . . .. ... ... ... ... .. . 48
2.12.8 Color and Texture Coordinate Clipping . . ... ... 48
2.12.9 Final Color Processing . . . . . . ... ... ... ... 49

3 Rasterization 50

3.1 Invariance . . . . . . . L. 51
3.2 Antialiasing . . . .. ... Lo 51
3.3 Points . . . .. 53
3.3.1 Point Rasterization State . . ... ... .. ... ... 56
3.4 Line Segments . . . .. . ... .. e 56
3.4.1 Basic Line Segment Rasterization . . . . .. ... ... 56
3.4.2 Other Line Segment Features . . . .. ... ... ... 59
3.4.3 Line Rasterization State . . . . . . ... .. ... ... 63
3.5 Polygons. . . .. .. 63
3.5.1 Basic Polygon Rasterization . . . . . . ... ... ... 63
3.5.2 Stippling . . ... Lo 65
3.5.3 Antialiasing . . . . .. ... L oo 66
3.5.4  Options Controlling Polygon Rasterization ... ... 66
3.5.5  Polygon Rasterization State . . . . . . ... ... ... 67
3.6 Pixel Rectangles . . . .. ... ... o oL 67
3.6.1 Pixel Storage Modes . . . . . ... ... ... ... 68
3.6.2 Pixel Transfer Modes . . . . ... ... ... .... 68
3.6.3 Rasterization of Pixel Rectangles . . . . .. ... ... 70
3.7 Bitmaps . . . .. oL 77
3.8 Texturing . . . . . . . . ... 79
3.8.1 Texture Minification . . . . ... ... ... ... ... 83
3.8.2 Texture Magnification . . .. ... ... ... ..... 87
3.8.3 Texture Environments and Texture Functions . . . . . 87
3.8.4 Texture Application . . ... ... ... ... .. ... 88
3.9 Fog. . . . e 90
3.10 Antialiasing Application . . . . . .. ... ..o, 92

Version 1.0 - 1 July 1994



CONTENTS

4 Fragments and the Framebuffer

4.1 Per-Fragment Operations . . . ... .. ... ... .. ....
4.1.1 Pixel Ownership Test . . . ... ... ... ... ..
4.1.2 Scissortest . . . ... oo oo
4.1.3 Alphatest . . .. . .. . o
4.1.4 Stencil test . . . ..o oo
4.1.5 Depth buffer test . . . . .. ... ... 0L
4.1.6 Blending . . . . . . ... o o
4.1.7 Dithering . . . . . .. oo
4.1.8 Logical Operation . . ... ... ... ... .. ....

4.2 Whole Framebuffer Operations . . . .. ... ... ... ...
4.2.1 Selecting a Buffer for Writing . . . .. ... ... ...
4.2.2  Fine Control of Buffer Updates . . . . . .. ... ...
4.2.3 Clearing the Buffers . . . . ... ... ... .. ....
4.2.4 The Accumulation Buffer . . . . ... ... ... ...

4.3 Drawing, Reading, and Copying Pixels . . . . ... ... ...
4.3.1 Writing to the Stencil Buffer . . ... ... ... ...
4.3.2 Reading Pixels . . . ... ... oL
4.3.3 Copying Pixels . . . . ... oo oo
4.3.4 Pixel draw/read state . . . ... ... L.

5 Special Functions
5.1 FEvaluators
5.2 Selection
5.3 Feedback
5.4 Display Lists

55 Flush and Finish . . . . .. ... ... ... ... ......

5.6 Hints

6 State and State Requests

A Invariance
A.1 Repeatability

A2 Multi-pass Algorithms . . . . ... ... o000

A.3 Invariance Rules

A.4 What All This Means . . . . . . . . . . . ...

B Corollaries

Version 1.0 - 1 July 1994

iii

114
114
120
122
125
129
129

130

154
154
155
155
157

158



v

Index of OpenGL Commands

Version 1.0 - 1 July 1994

CONTENTS

161



List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

5.1
5.2

Block diagram of the GL. . . . .. ... ... ... ...... 9
Creation of a processed vertex from a transformed vertex and

current values. . . ... L. Lo 13
Primitive assembly and processing. . . . .. ... ... .. .. 15
Triangle strips, fans, and independent triangles. . . . . . . . . 17
Quadrilateral strips and independent quadrilaterals. . . . . . 18
Vertex transformation sequence. . . . . ... ... .. .. .. 23
Current raster position. . . . . .. ... Lo 35
Processing of colors. . . . . . ... .. o oL 37
ColorMaterial operation. . . . . . . ... ... ... L. 43
Rasterization. . . . . . . . ... oL 50
Rasterization of non-antialiased wide points. . . . . . . .. .. 55
Rasterization of antialiased wide points. . . . . . . .. .. .. 55
Visualization of Bresenham’s algorithm. . . . ... .. .. .. 57
Rasterization of non-antialiased wide lines. . . . . .. .. .. 60
The region used in rasterizing an antialiased line segment. . . 62
Operation of DrawPixels. . . .. . .. ... ... .. .... 70
Selecting a subimage from an image . . ... ... ... ... 74
A bitmap and its associated parameters. . . . . .. .. .. .. 78
A texture image and the coordinates used to accessit. . . . . 8l
Per-fragment operations. . . . . . . ... .. oL oL 94
Operation of ReadPixels. . . .. ... ... ... ...... 107
Operation of CopyPixels. . . .. ... ... ... .. .... 112
Map Evaluation. . . .. ... .. oo oo 116
Feedback syntax. . . .. ... .. L o oo o 126

v

Version 1.0 - 1 July 1994



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

4.1

4.2

4.3
4.4
4.5
4.6

5.1
5.2

GL command suffixes . . ... ... .o 000, 8
GL data types . . . . . . Lo 10
Summary of GLerrors . . . . . . ... oL oL 13
RGBA color component conversions . . . . .. ... ..... 38
Summary of lighting parameters. . . . . . ... ... .. ... 40
Correspondence of lighting parameter symbols to names. . . . 44
Polygon flatshading color selection. . . . . . .. .. ... ... 48
PixelStore parameters pertaining to DrawPixels. . . . . . 68
PixelTransfer parameters. . . . . . . .. ... ... ..... 69
PixelMap parameters. . . . . . . . . ... ... ... ... 70
DrawPixels and ReadPixels types. . . ... ... ... .. 72
DrawPixels and ReadPixels formats. . . . ... ... ... 73
Correspondence of texture components to extracted R, G, B,

and A values. . . ... Lo L L 80
Texture parameters and their values. . . . . .. .. ... ... 83
Texture functions. . . . . .. . ... o o oL 89

Values controlling the source blending function and the source

blending values they compute . . . . ... ... ... 99
Values controlling the destination blending function and the

destination blending values they compute . .. .. ... ... 99
Arguments to LogicOp and their corresponding operations. . 101
Arguments to DrawBuffer and the buffers that they indicate.103
PixelStore parameters pertaining to ReadPixels. . . . . . . 108
ReadPixels index masks and component conversion formulas.112

Values specified by the target to Mapl. . . .. .. ... ... 115
Correspondence of feedback type to number of values per vertex.124

vi

Version 1.0 - 1 July 1994



LIST OF TABLES vii

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Attribute groups . . . . ... 134
State variable types . . . .. .o o oL 136
GL Internal begin-end state variables (inaccessible) . . . . . . 137
Current Values and Associated Data . . . .. ... ... ... 138
Transformation state . . . . . . . . ... L. 139
Coloring . . . . . . . .. 140
Lighting (see also Table 2.5 for defaults) . . . ... ... ... 141
Rasterization . . . . .. ... ... L 142
Texturing . . . . . . .. L 143
Pixel Operations . . . . ... ... . o 0. 144
Framebuffer Control . . . . . ... ... ... 0L, 145
Pixels . . . o o o 146
Pixels (cont.) . . .. .. .. ... . 147
Evaluators (GetMap takes a map name) . . ... .. .. .. 148
Hints . . . . . 0 o 149
Implementation Dependent Values . . . .. .. ... ... .. 150
More Implementation Dependent Values . . . . . . .. .. .. 151
Implementation Dependent Pixel Depths . . . . . . .. .. .. 152
Miscellaneous . . . . . . ... L L o 153

Version 1.0 - 1 July 1994



Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, specifically color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
buffer. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a
framebuffer. Further, some of OpenGL is specifically concerned with frame-
buffer manipulation.

1.2 Programmer’s View of OpenGL
To the programmer, OpenGL is a set of commands that allow the specifi-

cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebuffer.
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2 CHAPTER 1. INTRODUCTION

For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others affect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user’s
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to effect direct control of the framebuffer, such as reading and
writing pixels.

1.3 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebuffer, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-
dimensional lines and polygons to sophisticated floating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor’s task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebuffer. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the effect it has on what is
drawn. One of the main goals of this specification is to make OpenGL state
information explicit, to elucidate how it changes, and to indicate what its
effects are.

1.4 Our View

We view OpenGL as a state machine that controls a set of specific draw-
ing operations. This model should engender a specification that satisfies
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1.4. OUR VIEW 3

the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the specified methods, but
there may be ways to carry out a particular computation that are more
efficient than the one specified.
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Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a
framebuffer (and reading values stored in that framebuffer). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Fach mode
may be changed independently; the setting of one does not affect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are defined by a group of one or more vertices. A vertex
defines a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive fits within a specified region; in this case vertex data may be
modified and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the effects of a com-
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2.1. OPENGL FUNDAMENTALS 5

mand are realized. This means, for example, that one primitive must be
drawn completely before any subsequent one can affect the framebuffer. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the effects of a GL command on either GI. modes or the framebuffer
must be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no effect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes specification of such parameters as trans-
formation matrices, lighting equation coefficients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL. commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is “network-
transparent.” A server may maintain a number of GL contexts, each of
which is an encapsulation of current GL state. A client may choose to
connect to any one of these contexts.

The effects of GL commands on the framebuffer are ultimately controlled
by the window system that allocates framebuffer resources. It is the window
system that determines which portions of the framebuffer the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to configure the
framebuffer or initialize the GL. Similarly, display of framebuffer contents
on a CRT monitor (including the transformation of individual framebuffer
values by such techniques as gamma correction) is not addressed by the GL.
Framebuffer configuration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
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6 CHAPTER 2. OPENGL OPERATION

specify ideal behavior instead of actual behavior for certain GL operations.
In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL
(by gl, GL_, and GL, respectively in C) to reduce name clashes with other
packages. The prefixes are omitted in this document for clarity.

Floating-Point Computation

The GL must perform a number of floating-point operations during the
course of its operation. We do not specify how floating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers’ floating-point parts contain enough bits and that their
exponent fields are large enough so that individual results of floating-point
operations are accurate to about 1 part in 10°. The maximum representable
magnitude of a floating-point number used to represent positional or normal
coordinates must be at least 2%?; the maximum representable magnitude for
colors or texture coordinates must be at least 2!°. The maximum repre-
sentable magnitude for all other floating-point values must be at least 232
-0 =02 = 0 for any non-infinite and non-NaN z. 1.2 =2 -1 = z.
t4+0=0+2 = 2. 0° = 1. (Occasionally further requirements will be speci-
fied.) Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command
that requires floating-point data. The result of providing a value that is not
a floating-point number to such a command is unspecified, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL. command yields
predictable results, while providing a NaN or an infinity yields unspecified
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspecified result but must not lead to GL interruption or termination.
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2.2. GL STATE 7

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their
function. Although we describe the operations that the GL performs on the
framebuffer, the framebuffer is not a part of GL state.

We distinguish two types of state. The first type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise specified, all state referred to in this document
is GL server state; GL client state is specifically identified. Each instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL may be hardware dependent, this
discussion is independent of the specific hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but differ in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The first character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the specific type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
floating-point, or double-precision floating-point. The final character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two specific
examples come from the Vertex command:

void Vertex3f( float z, float y, float z ) ;

and
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8 CHAPTER 2. OPENGL OPERATION

‘ Letter ‘ Corresponding GL Type ‘

b byte

S short

i int

f float
d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types.
Refer to Table 2.2 for definitions of the GL types.

void Vertex2sv( short v/2]) ;

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form*

rtype Name{e1234}{c¢ b s i f d ub us ui}{ev}
( [args ,] T argl , ..., T argN [, args] );

rtype is the return type of the function. The braces ({}) enclose a series
of characters (or character pairs) of which one is selected. ¢ indicates no
character. The arguments enclosed in brackets ([args ,/ and [, args/) may
or may not be present. The N arguments arg! through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments’ type is given explic-
itly). If the final character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is fixed). If the final
character is v, then only argl is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).
For example,

*The declarations shown in this document apply to ANSI C. Languages such as C++
and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.
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2.4. BASIC GL OPERATION 9

void Normal3{fd}( T arg ) ;
indicates the two declarations

void Normal3f( float argl, float arg2, float arg3 ) ;
void Normal3d( double argl, double arg2, double arg3 ) ;

while
void Normal3{fd}v( T arg) ;
means the two declarations

void Normal3fv( float arg/3]) ;
void Normal3dv( double arg[3]) ;

Arguments whose type is fixed (i.e. not indicated by a suffix on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are effectively sent through a processing
pipeline.

The first stage provides an eflicient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they finally alter the framebuffer.
These operations include conditional updates into the framebuffer based
on incoming and previously stored depth values (to effect depth buffering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.
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10 CHAPTER 2. OPENGL OPERATION
‘ GL Type ‘ Minimum Precision ‘ Description ‘
boolean | 1 bit Boolean
byte 8 bits signed 2’s complement binary
integer
ubyte 8 bits unsigned binary integer
short 16 bits signed 2’s complement binary
integer
ushort | 16 bits unsigned binary integer
int 32 bits signed 2’s complement binary
integer
uint 32 bits unsigned binary integer
sizei 32 bits Non-negative binary integer size
enum 32 bits Enumerated binary integer value
bitfield | 32 bits Bit field
float 32 bits Floating-point value
clampf | 32 bits Floating-point value clamped to
0,1]
double | 64 bits Floating-point value
clampd | 64 bits Floating-point value clamped to
0,1]

Table 2.2: GL data types. An implementation may use more bits than
the number indicated in the table to represent one of these types. Correct
interpretation of integer values outside the minimum range is not required,

however.
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Figure 2.1. Block diagram of the GL.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
buffer; values may also be read back from the framebuffer or copied from
one portion of the framebuffer to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to
organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError( void ) ;

is used to obtain error information. FEach detectable error is assigned a
numeric code. When an error is detected, a flag is set and the code is
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12 CHAPTER 2. OPENGL OPERATION

recorded. Further errors, if they occur, do not affect this recorded code.
When GetError is called, the code is returned and the flag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO_ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-
code pairs. In this case, after a call to GetError returns a value other
than NO_ERROR each subsequent call returns the non-zero code of a distinct
flag-code pair (in unspecified order), until all non-NO_ERROR codes have been
returned. When there are no more non-NO_ERROR error codes, all flags are
reset. This scheme requires some positive number of pairs of a flag bit and
an integer. The initial state of all flags is cleared and the initial value of all
codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set,
results of GL operation are undefined only if OUT_OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no effect on GL state or framebuffer contents. If the generating command
returns a value, it returns zero. If the generating command modifies values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Two error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed an enumerant that is not one of those specified as allowable for that
command, the error INVALID ENUM results. This is the case even if the ar-
gument is a pointer to an enumerated value if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is specified, the error INVALID VALUE results.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.
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Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of | Yes
range
INVALID OPERATION || Operation illegal in current | Yes
state
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes
underflow
QUT_OF MEMORY Not enough memory left to ex- | Unknown
ecute command

Table 2.3: Summary of GL errors

Each vertex is specified with two, three, or four coordinates. In addition,
a current normal, current texture coordinates, and current color may be used
in processing each vertex. Normals are used by the GL in lighting calcu-
lations; the current normal is a three-dimensional vector that may be set
by sending three coordinates that specify it. Texture coordinates determine
how a texture image is mapped onto a primitive.

A color is associated with each vertex as it is specified. This associated
color is either the current color or a color produced by lighting depending on
whether or not lighting is enabled. Texture coordinates are similarly asso-
clated with each vertex. Figure 2.2 summarizes the association of auxiliary
data with a transformed vertex to produce a processed vertex.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be affected or replaced by lighting, and texture coordi-
nates are transformed and possibly affected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before a color has been assigned to a vertex, the state required by a ver-
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Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.
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Figure 2.3. Primitive assembly and processing.

tex is the vertex’s coordinates, the current normal, and the current texture
coordinates. Once color has been assigned, however, the current normal
is no longer needed. Because color assignment is done vertex-by-vertex, a
processed vertex comprises the vertex’s coordinates, its assigned color, and
its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-
tive is formed, it is clipped to a viewing volume. This may alter the primitive
by altering vertex coordinates, texture coordinates, and color. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices defining a primitive to be rasterized have texture coordinates
and color associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin( enum mode ) ;
void End( void ) ;
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There is no limit on the number of vertices that may be specified between
a Begin and an End.

Points. A series of individual points may be specified by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is specified
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE_ STRIP. In this case, the first vertex specifies
the first segment’s start point while the second vertex specifies the first
segment’s endpoint and the second segment’s start point. In general, the
ith vertex (for 7 > 1) specifies the beginning of the ith segment and the end
of the ¢ — 1st. The last vertex specifies the end of the last segment. If only
one vertex is specified between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean flag indicating if the current vertex is
the first vertex.

Line Loops. Line loops, specified with the LINE LOOP argument value to
Begin, are the same as line strips except that a final segment is added from
the final specified vertex to the first vertex. The additional state consists of
the processed first vertex.

Separate Lines. Individual line segments, each specified by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End
when the value of the argument to Begin is LINES. In this case, the first
two vertices between a Begin and End pair define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number
of specified vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used differently: a vertex holding the first
vertex of the current segment, and a boolean flag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are specified in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or filling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
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Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c¢) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that the in (a) and (b) triangle edge ordering is determined by the first
triangle, while in (¢) the order of each triangle’s edges is independent of the
other triangles.

If a specified polygon is nonconvex (in particular, if its bounding edges,
when projected onto the window, intersect anywhere other than at common
endpoints), then the rendered polygon need only lie within the convex hull
of the vertices defining its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been specified. The order of the vertices is sig-
nificant in lighting and polygon rasterization (see sections 2.12.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is specified by giving a series of defining ver-
tices between a Begin/End pair when Begin is called with TRIANGLE_STRIP.
In this case, the first three vertices define the first triangle (and their order is
significant, just as for polygons). Each subsequent vertex defines a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE_STRIP
has been supplied to Begin, produces no primitive. See Figure 2.4.

The state required to support triangle strips consists of a flag indicating
if the first triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
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will be replaced with the next vertex. After a Begin (TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the first vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one
exception: each vertex after the first always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are specified by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 37 + 1st, 3¢ + 2nd, and 3¢ + 3rd vertices (in
that order) determine a triangle for each ¢ = 0,1,...,n— 1, where there are
3n + k vertices between the Begin and End. k is either 0, 1, or 2; if & is not
zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3¢ and vertex B is vertex 3¢ + 1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin
and End are vy, ..., v,, where v; is the jth specified vertex, then quad 7 has
vertices (in order) vy, vai41, V2it3, and vgipo with ¢ = 0,...,|m/2|. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the first new vertex) of
the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices specified for a quadrilateral strip between Begin and
End is odd, the final vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 45 + 1st, the 45 + 2nd, the 45 4+ 31d,
and the 47 + 4th, generate a single quad, for j = 0,1,...,n — 1. The total
number of vertices between Begin and End is 4n + k, where 0 < k < 3; if
k is not zero, the final k£ vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
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Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle
fan, separate triangle set, quadrilateral strip, or separate quadrilateral set,
is flagged as either boundary or non-boundary. These classifications are used
during polygon rasterization; some modes affect the interpretation of poly-
gon boundary edges (see section 3.5.4). By default, all edges are boundary
edges, but the default flagging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag( boolean flag ) ;
void EdgeFlagv( boolean *flag ) ;

to change the value of a flag bit. If flag is zero, then the flag bit is set to
FALSE; if flag is non-zero, then the flag bit is set to TRUE,

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair
begins an edge. If the edge flag bit is TRUE, then each specified vertex begins
an edge that is flagged as boundary. If the bit is FALSE, then induced edges
are flagged as non-boundary.

The state required for edge flagging consists of one current flag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
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polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coordi-
nates, and texture coordinates (Vertex, Color, Index, Normal, TexCo-
ord), EvalCoord and EvalPoint commands (see section 5.1), commands
for specifying lighting material parameters (Material commands; see sec-
tion 2.12.2), display list invocation commands (CallList and CallLists;
see section 5.4), and the EdgeFlag command. Executing Begin after Be-
gin has already been executed but before an End is issued generates the
INVALID OPERATION error, as does executing End without a previous corre-
sponding Begin. Executing any other GL command within Begin/End
results in the error INVALID OPERATION.

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}( T coords) ;
void Vertex{234}{sifd}v( T coords ) ;

A call to any Vertex command specifies four coordinates: z, y, z, and w.
The = coordinate is the first coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the # and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets z, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the specification of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
fined behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoord{1234}{sifd}( T coords) ;
void TexCoord{1234}{sifd}v( T coords ) ;
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specify the current homogeneous texture coordinates, named s, ¢, r, and g¢.

The TexCoord1 family of commands set the s coordinate to the provided

single argument while setting ¢ and r to 0 and ¢ to 1. Similarly, TexCoord2

sets s and ¢ to the specified values, r to 0 and ¢ to 1; TexCoord3 sets s, t,

and 7, with ¢ set to 1, and TexCoord4 sets all four texture coordinates.
The current normal is set using

void Normal3{bsifd}( T coords) ;
void Normal3{bsifd}v( T coords) ;

The current normal is set to the given coordinates whenever one of these
commands is issued. Byte, short, or integer values passed to Normal are
converted to floating-point values as indicated for the corresponding (signed)
type in Table 2.4.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color indez, and a current four-valued RGBA
color. One or the other of these is significant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Color{34}{bsifd ubusui}( T components) ;
void Color{34}{bsifd ubusui}v( T components ) ;

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to floating-point values is discussed in
section 2.12.)

Versions of the Color command that take floating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.12 on colors and
coloring). Values outside [0, 1] are not clamped.

The command

void Index{sifd}( T indezx) ;
void Index{sifd}v( T indez ) ;

Index updates the current (single-valued) color index. It takes one ar-
gument, the value to which the current color index should be set. Values
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outside the (machine-dependent) representable range of color indices are not
clamped.

The state required to support vertex specification consists of four
floating-point numbers to store the current texture coordinates s, ¢, r, and
q, three floating-point numbers to store the three coordinates of the current
normal, four floating-point values to store the current RGBA color, and one
floating-point value to store the current color index. There is no notion of
a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial
value of ¢ is one. The initial current normal has coordinates (0,0,1). The
initial RGBA color is (R, G,B,A) = (1,1,1,1). The initial color index is 1.

2.8 Rectangles

There is a set of GL. commands to support efficient specification of rectangles
as two corner vertices.

void Rect{sifd}( T 1, Tyl, Tz2, Ty2);
void Rect{sifd}v( T v1/2], T v2/2]) ;

Each command takes either four arguments organized as two consecutive
pairs of (z,y) coordinates, or two pointers to arrays each of which contains
an z value followed by a y value. The effect of the Rect command

Rect (x1,y1,22,¥2);

has exactly the same effect as the following sequence of commands:

Begin (POLYGON) ;
Vertex2(xq,y1);
Vertex2(xq, 1) ;
Vertex2(xq, 49) ;
Vertex2(xq,y9);

EndQ);

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.
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Figure 2.6. Vertex transformation sequence.

2.9 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their co-
ordinates are used to produce an image in the framebuffer. We begin with
a description of how vertex coordinates are transformed and how this trans-
formation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
vield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
final viewport transformation is applied to convert these coordinates into
window coordinates.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of z, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4 x 4.
xO
Yo

o

Wy

If a vertex in object coordinates is given by and the model-view
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matrix is M, then the vertex’s eye coordinates are found as

xe xO
ve | _ap | ¥
26 ZO
w6 wO

Similarly, if P is the projection matrix, then the vertex’s clip coordinates

are
xC xe
yC _ P ye
ZC 26
wC w6

The vertex’s normalized device coordinates are then

Tq xc/wc
(yd) = (yc/wc) .
Zd Zc/wc

2.9.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and
height in pixels, p, and p,, respectively, and its center (o.,o0,) (also in
xu}
pixels). The vertex’s window coordinates, (yw ) , are given by
Zw

Ty (pe/2)xq+ 0p
(yw) = ( (Py/2)ya + oy ) :
Zuy [(f=n)/2za+ (n+ [)/2

The factor and offset applied to z; encoded by n and f are set using
void DepthRange( clampd n, clampd f) ;

Each of n and fare clamped to lie within [0, 1], as are all arguments of type
clampd or clampf. z,, is taken to be represented in fixed-point with at least
as many bits as there are in the depth buffer of the framebuffer. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k£ € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are specified using
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void Viewport( int z, int y, sizei w, sizei h ) ;

where z and y give the z and y window coordinates of the viewport’s lower-
left corner and w and h give the viewport’s width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as 0, = ¢ + w/2 and oy = y+ h/2; p, = w, p, = h.

Viewport width and height are clamped to implementation-dependent
maximums when specified. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either wor h
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, wand h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. o, and o, are set to
w/2 and h/2, respectively. n and f are set to 0.0 and 1.0, respectively.

2.9.2 Matrices

The projection matrix and model-view matrix are set and modified with
a variety of commands. The affected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode( enum mode ) ;

which takes one of the three pre-defined constants TEXTURE, MODELVIEW, or
PROJECTION as the argument value. TEXTURE is described later. If the current
matrix mode is MODELVIEW, then matrix operations apply to the model-view
matrix; if PROJECTION, then they apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}( T m/16]) ;
void MultMatrix{fd}( T m/[16]) ;

LoadMatrix takes a pointer to a 4 X 4 matrix stored in column-major order
as 16 consecutive floating-point values, i.e. as

a1 as a9 a13
ay G G109 0G14
az a7 a11 a1s
g ag G12 G1e
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(This differs from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as Load Matrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C' is the current matrix and M is the matrix pointed
to by MultMatrix’s argument, then the resulting current matrix, C’, is

C'=C- M.

The command
void LoadIdentity( void ) ;

effectively calls LoadMatrix with the identity matrix:
1 0 0 0

01 0 0
0 01 0
0 0 0 1

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotate{fd}( T#, Tz, Ty, Tz);

# gives an angle of rotation in degrees; the coordinates of a vector v are given
byv=(zy Z)T. The computed matrix is a counter-clockwise rotation about
the line through the origin with the specified axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus
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then
R =uu® + cos oI — uuT) +sin 65.

The arguments to
void Translate{fd}( Tz, Ty, T z) ;

give the coordinates of a translation vector as (x y z)7. The resulting matrix
is a translation by the specified vector:

o O O =
O O = O
O = O O
— N < R

void Scale{fd}( Tz, Ty, Tz);

produces a general scaling along the z-, y-, and z- axes. The corresponding
matrix is

oo O R
o o w O
o n o o
_— o o o

For

void Frustum( double /, double r, double b, double ¢,
double n, double f) ;

the coordinates (I b — n)T and (r t — n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)7). f
gives the distance from the eye to the far clipping plane. If either n or fis less
than or equal to zero, the error INVALID VALUE results. The corresponding
matrix is

o0 0
2n t+b

v E B

“+n n

0 0 - -7

0 0 —1 0

void Ortho( double /, double r, double b, double ¢,
double n, double f) ;

Version 1.0 - 1 July 1994



28 CHAPTER 2. OPENGL OPERATION

describes a matrix that produces parallel projection. (16 —n)” and (rt —n)7

specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. fgives the distance
from the eye to the far clipping plane. The corresponding matrix is

T+l
Tl

_itb

2
r—1
0 t—b

o O

|
sy
+
3

3
[y

—n

0
2
T—b
0 0
0 0

=T
—

There is another 4 x4 matrix that is applied to texture coordinates. This
matrix is applied as

mp ms Mg Mq3
my MMe Mi1o M4

b

S
t
m3 my  Mmi1 Mis T
myg4 Mg M1z Mis q

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix( void ) ;

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix( void ) ;

pops the top entry off of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix off a stack with only one entry generates the error STACK_UNDERFLOW;
pushing a matrix onto a full stack generates STACK_OVERFLOW.
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The state required to implement transformations consists of a three-
valued integer indicating the current matrix mode, a stack of at least two
4 X 4 matrices for each of PROJECTION and TEXTURE with associated stack
pointers, and a stack of at least 32 4 X 4 matrices with an associated stack
pointer for MODELVIEW. Initially, there is only one matrix on each stack, and
all matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.9.3 Normal Transformation

Finally, we consider how the model-view matrix affects normals. Normals
are of interest only in eye coordinates, so the rules governing their transfor-
mation to other coordinate systems are not examined.

Normals sent to the GL may or may not have unit length. If normal-
ization is enabled, then normals specified with the Normal3 command are
normalized after transformation. Normalization is controlled with

void Enable( enum target ) ;
and
void Disable( enum target ) ;

with target equal to NORMALIZE. This requires one bit of state. The initial
state is for normals not to be normalized.

A normal at a point defines a plane at that point. If the normal is
x

(ngy mny n,) and the point is Z , then for the point to satisfy the

w
plane equation we must have

( Ny Ny Nz ( )

2 e r
[l
o

whence
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or ¢ = 0 if w = 0. Therefore, if the model-view matrix is M, then the
transformed plane equation is

(ny' ny n) ¢)=(ny ny n, q)-M_1

and the transformed normal is

1
\/ T ny: . (2.1)
Ny Ny n. n.

If normalization is disabled, then the square root in equation 2.1 is replaced
with 1. Otherwise, the square root remains as written.

Because we specify neither the floating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M. In case of an exactly
singular matrix, the transformed normal is undefined. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or
termination.

2.9.4 Generating texture coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGen{ifd}( enum coord, enum pname, T param ) ;
void TexGen{ifd}v( enum coord, enum pname, T params ) ;

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, ¢, r, or ¢
coordinate, respectively. In the first form of the command, params is a
pointer to an array of values that specify texture generation parameters; in
the second form, params must be a value specifying a single-valued texture
generation parameter. pname must be one of the three symbolic constants
TEXTURE_GEN_MODE, OBJECT PLANE, or EYE_PLANE. If pname is TEXTURE_GEN MODE,
then either params points to or params is an integer that is one of the
symbolic constants OBJECT_LINEAR, EYE LINEAR, or SPHERE_MAP.
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If TEXTURE_GEN _MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = P1Zo + P2Yo + P320 + PaWs.

Ty, Yo. Zo, and w, are the object coordinates of the vertex. py,...,ps are
specified by calling TexGen with pname set to 0BJECT PLANE in which case
params points to an array containing pq,...,ps. Thereis a distinct group of
plane equation coefficients for each texture coordinate; coord indicates the
coordinate to which the specified coefficients pertain.

If TEXTURE GEN_MODE indicates EYE_LINEAR, then the function is

g = pize + phye + Phze + phwe

where
(Ph ph Py Py)=(p p2 ps pa)M!

Te, Ye, Ze, and w, are the eye coordinates of the vertex. py,...,ps are
set by calling TexGen with pname set to EYE_ PLANE in correspondence with
setting the coefficients in the OBJECT_PLANE case. M is the model-view matrix
in effect when py,...,p4 are specified. Computed texture coordinates may
be inaccurate or undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE GEN_MODE indicating SPHERE MAP can simulate the reflected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n’. Letr = (r, 7, 7, )T, the reflection
vector, be given by

r=u-2nn"u,

and let m = 24/r2 + 7‘2 + (r. + 1)2. Then the value assigned to an s coor-

dinate (the first TexGen argument value is S) is s = r,/m 4 1; the value
assigned to a t coordinate is ¢ = r,/m + % Calling TexGen with a co-
ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE_GEN R, or TEXTURE GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed
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according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP specifica-
tion, depending on the current setting of TEXTURE GEN_MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of p; for s are all 0 except p; which is one; for ¢ all the p; are
zero except po, which is 1. The values of p; for r and ¢ are all 0. These values
of p; apply for both the EYE LINEAR and OBJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.10 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the wview
volume is defined by

—We S Te S We

—We S Ye S We .

—We S Ze S We

This view volume may be further restricted by as many as n client-defined
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Fach client-defined plane specifies a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-defined clip planes are enabled, the clip
volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane( enum p, double eqnfj]) ;

The value of the first argument, p, is a symbolic constant, CLIP PLANE:, where
¢ is an integer between 0 and n — 1, indicating one of n client-defined clip
planes. egnis an array of four double-precision floating-point values. These
are the coefficients of a plane equation in object coordinates: py, pa, p3, and
pa (in that order). The inverse of the current model-view matrix is applied
to these coeflicients, at the time they are specified, yielding

(P Py ph Ph)=(p1 p2 ps ps) M

Version 1.0 - 1 July 1994



2.10. CLIPPING 33

(where M is the current model-view matrix; the resulting plane equation is
undefined if M is singular and may be inaccurate if M is poorly-conditioned)
to obtain the plane equation coefficients in eye coordinates. All points with
eye coordinates (z. Y. 2. we )T that satisfy

/

(ry vy P5 Py)

lie in the half-space defined by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-defined clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP_PLANE: where ¢ is an integer between 0 and n;
specifying a value of ¢ enables or disables the plane equation with index 1.
The constants obey CLIP_PLANE; = CLIP_PLANEO + .

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 <t < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates
are Py and Py, then ¢ is given by

P =P, + (1 - 1)P,.

The value of ¢ is used in color and texture coordinate clipping (sec-
tion 2.12.8).

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume’s boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge flags are asso-
ciated with these vertices so that edges introduced by clipping are flagged
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as boundary (edge flag TRUE), and so that original edges of the polygon that
become cut off at these vertices retain their original flags.

If it happens that a polygon intersects an edge of the clip volume’s
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have w. values of differing signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of w. > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coefficients (pj p5 ph p)) (ora
number of similarly specified clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respecified with co-
efficients (—p{ —p, —pt —p}) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

Clipping requires at least 6 sets of plane equations (each consisting of
four double-precision floating-point coefficients) and at least 6 corresponding
bits indicating which of these client-defined plane equations are enabled. In
the initial state, all client-defined plane equation coefficients are zero and
all planes are disabled.

2.11 Current Raster Position

The current raster position is used by commands that directly affect pixels in
the framebuffer. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

The current raster position consists of three window coordinates ., Y.,
and z,, a clip coordinate w,. value, an eye coordinate distance, a valid bit,
and associated data consisting of a color and texture coordinates. It is set
using one of the RasterPos commands:

void RasterPos{234}{sifd}( T coords) ;
void RasterPos{234}{sifd}v( T coords) ;
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RasterPos4 takes four values indicating z, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only z, y, and z with w implicitly set
to 1 (or only = and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were specified in a Vertex com-
mand. The =z, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace the
color and texture coordinates stored in the current raster position’s associ-
ated data. The distance from the origin of the eye coordinate system to the
vertex as transformed by only the current model-view matrix replaces the
current raster distance. This distance can be approximated (see section 3.9).

The transformed coordinates are passed to clipping as if they represented
a point. If the “point” is not culled, then the projection to window coor-
dinates is computed (section 2.9) and saved as the current raster position,
and the valid bit is set. If the “point” is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires five single-precision floating-point
values for its z,,, ¥, and z, window coordinates, its w, clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0,0,0, 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1,1,1,1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.
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Figure 2.7. The current raster position and how it is set.
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Index _
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o ] RGBA | Color
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Figure 2.8. Processing of colors. n is the number of bits in a color index;
m is the number of bits an R, G, B, or A component. See Table 2.4 for the
interpretation of k.

2.12 Colors and Coloring

Figure 2.8 diagrams the processing of colors before rasterization. In-
coming colors arrive in one of several formats. Table 2.4 summarizes the
conversions that take place on R, G, B, and A components depending on
which version of the Color command was invoked to specify the compo-
nents. As a result of limited precision, some converted values will not be
represented exactly. In color index mode, a single-valued color index is not
mapped.

Next, lighting, if enabled, produces a color. If lighting is disabled, the
current color is used in further processing. After lighting, RGBA colors
are clamped to the range [0,1]. A color index is converted to fixed-point
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‘ Command ‘ Element Type ‘ Conversion Formula ‘
Colorub | Unsigned 8-bit integer /(2% - 1)
Colorb | Signed 8-bit integer (2c+1)/(2° - 1)
Colorus | Unsigned 16-bit integer c/(2'% - 1)
Colors | Signed 16-bit integer (2c+1)/(21¢ = 1)
Colorui | Unsigned 32-bit integer c/(2°% - 1)
Colori | Signed 32-bit integer (2c+1)/(2°2 - 1)
Colorf | Floating-point c

Table 2.4: RGBA Color component conversions. The leftmost column indi-
cates the correspondence between color setting commands and conversions.
¢ represents the value of the component to be converted.

and then its integer portion is masked (see section 2.12.6). After clamping
or masking, a primitive may be flatshaded, indicating that all vertices of
the primitive are to have the same color. Finally, if a primitive is clipped,
then colors (and texture coordinates) must be computed at the vertices
introduced or modified by clipping.

2.12.1 Lighting

GL lighting computes a color for each vertex sent to the GL. This is accom-
plished by applying an equation defined by a client-specified lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
defining the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.12.5.)
Lighting may be in one of two states:

1. Lighting Off. In this state the color assigned to a vertex is the current
color.

2. Lighting On. In this state, a vertex’s color is found by computing a
value given the current lighting parameters.

Lighting is turned either on or off using the generic Enable or Disable
commands with the symbolic value LIGHTING.

Version 1.0 - 1 July 1994



2.12. COLORS AND COLORING 39

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real,
or boolean. A color parameter consists of four floating-point elements, one
for each of R, G, B, and A, in that order. There are no restrictions on
the allowable values for these parameters. A position parameter consists
of four floating-point coordinates (z, y, z, and w) that specify a position
in object coordinates (w may, in some cases, be zero, indicating a point at
infinity in the direction given by x, y, and z). A direction parameter consists
of three floating-point coordinates (z, y, and z) that specify a direction in
object coordinates. A real parameter is one floating-point value. The various
values and their types are summarized in Table 2.5. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside
the range given for that parameter in the table.

There are n light sources, indexed by ¢ = 0,...,n—1. (nis an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for d.;; and s, differ for ¢ = 0 and ¢ > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If ¢; and
cz are colors without alpha where ¢; = (r1,91,b1) and ca = (72,92,b2),
then define ¢q * ¢g = (7172, 9192, b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If dy and d; are directions, then
define

d; ®d; = max{d, -d,,0}.

(Directions are taken to have three coordinates.) If Py and P are (homoge-

—_—
neous, with four coordinates) points then let P;P, be the unit vector that
points from P4 to Py. Note that if Py has a zero w coordinate and Py has

—_—
non-zero w coordinate, then P1P5 is the unit vector corresponding to the
direction specified by the z, y, and z coordinates of P5; if Py has a zero w

coordinate and P53 has a non-zero w coordinate then P{P5 is the unit vector
that is the negative of that corresponding to the direction specified by Pj.

If both Py and P, have zero w coordinates, then ﬁ is the unit vector
obtained by normalizing the direction corresponding to Py — Py.

If d is an arbitrary direction, then let d be the unit vector in d’s direction.
Let [|P1P3|| be the distance between Py and Pj. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let P. be the eyepoint ((0,0,0,1) in eye coordinates).

Version 1.0 - 1 July 1994



40 CHAPTER 2. OPENGL OPERATION

‘Parameter H Type ‘ Default Value ‘Description ‘

Material Parameters

A color (0.2,0.2,0.2,1.0) | ambient color of material

den color (0.8,0.8,0.8,1.0) | diffuse color of material

Sem color (0.0,0.0,0.0,1.0) | specular color of material

€cm color (0.0,0.0,0.0,1.0) | emissive color of material

Srm real 0.0 specular exponent (range:
(0.0, 128.0])

A, real 0.0 ambient color index

d,, real 1.0 diffuse color index

Sim real 1.0 specular color index

Light Source Parameters

acy; color (0.0,0.0,0.0,1.0) | ambient intensity of light ¢
dei(¢=0) color (1.0,1.0,1.0,1.0) | diffuse intensity of light 0
dei(e > 0) color (0.0,0.0,0.0,1.0) | diffuse intensity of light ¢
sqi(1=10) color (1.0,1.0,1.0,1.0) | specular intensity of light 0
sqi(1 > 0) color (0.0,0.0,0.0,1.0) | specular intensity of light i
P position | (0.0,0.0,1.0,0.0) | position of light i
Sdii direction | (0.0,0.0,—1.0) | direction of spotlight for light
i
Srli real 0.0 spotlight exponent for light ¢
(range: [0.0,128.0])
Crli real 180.0 spotlight cutoff angle for
light ¢ (range: [0.0,90.0],
180.0)
kos real 1.0 constant attenuation factor
for light i (range: [0.0,00))
k1, real 0.0 linear attenuation factor for
light i (range: [0.0,00))
koy real 0.0 quadratic attenuation factor

for light i (range: [0.0,00))

Lighting Model Parameters
as color (0.2,0.2,0.2,1.0) | ambient color of scene

Vps boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUE) or (0,0, 00) (FALSE)

ths boolean FALSE use two-sided lighting mode

Table 2.5: Summary of lighting parameters. The range of individual color
components is (—00, +00).
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The color ¢ produced by lighting a vertex is given by

CcC = €.y

+ Ay, *ag
n—1
£ (atti)(spots) [ +

=0 5
+ (Il O] VPpAlz)dcm * dcli
+ (fz)(n O] hi)srmscm * Scli]
where
—
o= { L noVPy#£0, (2.2)
0, otherwise,
— —
h. = VPpli + VP, vps = TRUE, (2 3)
VP, +(0 0 1)7, v, = FALSE,
1 S, i Pyy’s w#0,
att, = koi 4 k| VPl + kol [ VP | (2.4)
1.0, otherwise,
% ~ . % ~
(PoiV © 841:)°%,  ¢pp; # 180.0, P,V © 841 > cos( i),
spot; = 0.0, erti 7 180.0, BV @ 841 < cos(ep; 12D

1.0, ¢ = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
d.,. Results of lighting are undefined if the w, coordinate (w in eye coor-
dinates) of V is zero.

Lighting may operate in two-sided mode (tp, = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with —n. If{;, = FALSE,
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then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon’s signed
area computed in window coordinates. One way to compute this area is

1 nl . .
_ 1 Pl 1Pl ¢
a = 3 ;:0 LY — Xl Yy (2.6)

where 2, and y?, are the 2 and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and ¢ & 1 is (¢ 4+ 1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace( enum dir) ;

Setting dir to ccW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if @ < 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if @ > 0, then the front color is selected. If dir is cW, then
a is replaced by —a in the above inequalities. This requires one bit of state;
initially, it indicates cCW.

2.12.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.5). Sets
of lighting parameters are specified with

void Material{if}( enum face, enum pname, T param ) ;
void Material{if}v( enum face, enum pname, T params ) ;
void Light{if}( enum light, enum pname, T param ) ;
void Light{if}v( enum light, enum pname, T params ) ;
void LightModel{if}( enum pname, T param ) ;

void LightModel{if}v( enum pname, T params) ;

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.6). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
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values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT_AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHT:, indicating that light 7 is to have the
specified parameter set. The constants obey LIGHT: = LIGHTO + 7.

Table 2.6 gives, for each of the three parameter groups, the correspon-
dence between the pre-defined constant names and their names in the light-
ing equations, along with the number of values that must be specified with
each. Color parameters specified with Material and Light are converted
to floating-point values (if specified as integers) as indicated in Table 2.4
for signed integers. The error INVALID VALUE occurs if a specified lighting
parameter lies outside the allowable range given in Table 2.5. (The sym-
bol “c0” indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is specified.
These transformed values are the values used in the lighting equation. The
spotlight direction is transformed when it is specified into a value of sy
using the rules given for transforming normals at the end of section 2.9.3.

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHT: (¢ is in the range 0 to n — 1, where n is the
implementation-dependent number of lights). If light ¢ is disabled, the ith
term in the lighting equation is effectively removed from the summation.

2.12.3 ColorMaterial

It is possible to attach one or more material properties to the current
color, so that they continuously track its component values. This behavior
is enabled and disabled by calling Enable or Disable with the symbolic
value COLOR_MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial( enum face, enum mode ) ;

face is one of FRONT, BACK, or FRONT_AND BACK, indicating whether the front
material, back material, or both are affected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND DIFFUSE and
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‘ Parameter H Name ‘ Number of values ‘

Material Parameters (Material)

A, AMBIENT 4
d... DIFFUSE 4
Acpm s o AMBIENT AND DIFFUSE 4
Sem SPECULAR 4
€ EMISSION 4
S SHININESS 1
Gy Aoy S COLOR_INDEXES 3
Light Source Parameters (Light)
a. AMBIENT 4
d.; DIFFUSE 4
Scli SPECULAR 4
P, POSITION 4
Sali SPOT_DIRECTION 3
Syl SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
kq LINEAR_ATTENUATION 1
ko QUADRATIC ATTENUATION 1
Lighting Model Parameters (LightModel)
Acg LIGHT MODEL_AMBIENT 4
Vbs LIGHT MODEL LOCAL_VIEWER 1
tbs LIGHT MODEL_TWO_SIDE

Table 2.6: Correspondence of lighting parameter symbols to names.
AMBIENT_AND DIFFUSE is used to set a.,, and d.,, to the same value.
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To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Front Ambient

[=————>-To lighting equations
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.
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Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.
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Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.
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this path only when a command is issued

== State values flow continuously along this path

Figure 2.9. ColorMaterial operation. Material properties are continuously

ColorMaterial is enabled and has the

appropriate mode. Only the front material properties are included in this
figure. The back material properties are treated identically.
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specifies which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of e.,,
acm, dem OF Sepy, respectively, will track the current color. If mode is
AMBIENT AND DIFFUSE, both a., and d., track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLORMATERIAL is enabled sets the front material a.,, to the value of
the current color.

2.12.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a five-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT_AND_BACK and AMBIENT_AND DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.12.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA
material parameters. First, the RGBA diffuse and specular intensities of
light ¢ (d.; and s., respectively) determine color index diffuse and specular
light intensities, dj; and sj; from

di; = (.30)R(dch’) + (.59)G(dch’) + (.11)B(dch’)

and

S;; = (.30)R(SCH) + (.59)G(SCH) + (.11)B(SCH).
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R(x) indicates the R component of the color x and similarly for G/(x) and
B(x).
Next, let

n

s =Y (att;)(spot;)(s;)(f;)(n @ hy)*m
=0
where att; and spot; are given by equations 2.4 and 2.5, respectively, and f;
and h; are given by equations 2.2 and 2.3, respectively. Let s’ = min{s, 1}.
Finally, let

n

d = 3 (att;)(spot:)(dys)(n © VB,).

=0

Then color index lighting produces a value ¢, given by
c=am+d(1—5Ydy —an)+ 5 (sm — an).

The final color index is

¢ = min{c, 8, }.

The values a,,, d,, and s, are material properties described in Tables 2.5
and 2.6. Any ambient light intensities are incorporated into a,,. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of ¢;; and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values a,,, d,,, and s, are set with Material using prop of
COLOR_INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three floating-point values. These values have no

effect on RGBA lighting.

2.12.6 Clamping or Masking

After lighting, RGBA colors are clamped to the range [0,1]. For a color
index, the index is first converted to fixed-point with an unspecified number
of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while
the integer portion is masked (bitwise ANDed) with 2" — 1, where n is the
number of bits in a color in the color index buffer (buffers are discussed in
chapter 4).
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Primitive type of polygon ¢ ‘ Vertex ‘

single polygon (i = 1) 1
triangle strip 142
triangle fan 142
independent triangle 31
quad strip 21+ 2
independent quad 4q

Table 2.7: Polygon flatshading color selection. The color used for flatshading
the ith polygon generated by the indicated Begin/End type is the current
color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the color is produced by lighting the indicated ver-
tex. Vertices are numbered 1 through n, where n is the number of vertices
between the Begin/End pair.

2.12.7 Flatshading

A primitive may be flatshaded, meaning that all vertices of the primitive are
assigned the same color. This color is the color of the vertex that spawned
the primitive. For a point, this is the color associated with the point. For a
line segment, it is the color of the second (final) vertex of the segment. For
a polygon, the selected color depends on how the polygon was generated.
Table 2.7 summarizes the possibilities.

Flatshading is controlled by

void ShadeModel( enum mode ) ;

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, flatshading is turned on. ShadeModel thus requires one bit of state.

2.12.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. If the color is associated with a vertex that lies within the clip
volume, it is unaffected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.
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Let the color assigned to the two vertices Py and Py of an unclipped
edge be ¢; and ¢3. The value of ¢ (Section 2.10) for a clipped point P is
used to obtain the color associated with P as

c=tey + (1 —1t)ca.

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar.) Polygon clipping may create a clipped vertex
along an edge of the clip volume’s boundary. This situation is handled by
noting that polygon clipping proceeds by clipping against one plane of the
clip volume’s boundary at a time. Color clipping is done in the same way,
so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

2.12.9 Final Color Processing

For an RGBA color, each color component (which lies in [0,1]) is converted
(by rounding to nearest) to a fixed-point value with m bits. We assume
that the fixed-point representation used represents each value k/(2™ — 1),
where k£ € {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebuffer. If the framebuffer does not
contain an A component, then m must be at least 2 for A. A color index
is converted (by rounding to nearest) to a fixed-point value with at least as
many bits as there are in the color index portion of the framebuffer.

Because a number of the form k/(2™ —1) may not be represented exactly
as a limited-precision floating-point quantity, we place a further requirement
on the fixed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satisfied, an RGBA component must convert to a value
that matches the component as specified in the Color command: if m is less
than the number of bits b with which the component was specified, then the
converted value must equal the most significant m bits of the specified value;
otherwise, the most significant b bits of the converted value must equal the
specified value.
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Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
first is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebuffer. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment’s associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment’s center, which is offset by (1/2,1/2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not affected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simplifies antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled.
Points may be given differing diameters and line segments differing widths.
A point, line segment, or polygon may be antialiased.

50
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Point
Rasterization

From )
- Line - .
Primitive Rasterization B> Texturing [ Fog =

Assembly Fragments

Polygon
Rasterization

Pixel
DrawPixels —#| Rectangle
Rasterization

Bitmap

Bitmap B Rasterization

Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitive p’ obtained by translating a primitive p through an
offset (2,y) in window coordinates, where z and y are integers. As long
as neither p’ nor p is clipped, it must be the case that each fragment f’
produced from p’ is identical to a corresponding fragment f from p except
that the center of f’ is offset by («,y) from the center of f.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left unaffected, but the A value is multiplied by a floating-point value in
the range [0,1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebuffer.
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In color index mode, the least significant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = min{4, m}, where
m is the number of bits in the color index portion of the framebuffer. The
antialiasing process sets these b bits based on the fragment’s coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are difficult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebuffer are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive’s relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment’s grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (z,y) and upper right corner (z + 1,y + 1). We recognize
that this simple box filter may not produce the most favorable antialiasing
results, but it provides a simple, well-defined model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If fy and f; are two fragments, and the portion of f; covered by some
primitive is a subset of the corresponding portion of f; covered by
the primitive, then the coverage computed for f; must be less than or
equal to that computed for fs.

2. The coverage computation for a fragment f must be local: it may
depend only on f’s relationship to the boundary of the primitive being
rasterized. It may not depend on f’s z and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.
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In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeofl.

3.3 Points

The rasterization of points is controlled with
void PointSize( float size ) ;

size specifies the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID_VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT_SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its z,, and y,
coordinates (recall that the subscripts indicate that these are 2 and y window
coordinates) to integers. This (z,y) address, along with the data associated
with the vertex corresponding to the point, is sent as a single fragment to
the per-fragment stage of the GL.

The effect of a point width other than 1.0 depends on the state of
point antialiasing. If antialiasing is disabled, the actual width is deter-
mined by rounding the supplied width to the nearest integer, then clamping
it to the implementation-dependent maximum non-antialiased point width.
Though this implementation-dependent value cannot be queried, it must
be no less than the implementation-dependent maximum antialiased point
width, rounded to the nearest integer value, and in any event no less than
1. If rounding the specified width results in the value 0, then it is as if the
value were 1. If the resulting width is odd, then the point

Ll +3)

N | —

(z,y) = ([zw] +
is computed from the vertex’s x,, and y,,, and a square grid of the odd width
centered at (z,y) defines the centers of the rasterized fragments (recall that

fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(r,0) = (12w + 5 L + 50
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Figure 3.2. Rasterization of non-antialiased wide points.

fragment centers produced by rasterization for any point that lies within the

shaded region. The dotted grid lines lie on half-integer coordinates.
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Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the specified width.
The X marks indicate those fragment centers produced by rasterization. A
fragment’s computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (z,y). See Figure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point’s
(Zyw, Yw) (Figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the correspond-
ing fragment square (but see section 3.2). This value is saved and used in
the final step of rasterization (section 3.10). The data associated with each
fragment are otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but
the width 1.0 must be provided. If an unsupported width is requested, the
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nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation
dependent. The range and gradations may be obtained using the query
mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0.1,0.2,...,1.9,2.0
are supported.

3.3.1 DPoint Rasterization State

The state required to control point rasterization consists of the floating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth( float width ) ;

with an appropriate positive floating-point width, controls the width of ras-
terized line segments. The default width is 1.0. Values less than or equal
to 0.0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
z-major or y-major. x-major line segments have slope in the closed inter-
val [—1,1]; all other line segments are y-major (slope is determined by the
segment’s endpoints). We shall specify rasterization only for z-major seg-
ments except in cases where the modifications for y-major segments are not
self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates zy and y;, define a diamond-shaped region
that is the intersection of four half-planes:

Rf = Sf1ﬂ5f2ﬂ5f3ﬂ5f4
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Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 1s placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

where

Spio= (@ ylr+y>ap+yr— 0.5}
Srz = {(@,y)lr+y <ap+ys+0.5}
Stz = {(z,y)lr—y>2;—ys— 0.5}
S = {(@,y)lr—y<zp—ys+0.5}

A line segment starting at p, and ending at p produces those fragments
f for which the segment intersects R, except if p is contained in Ry. See
Figure 3.4.

When p, and py lie on fragment centers, this characterization of frag-
ments reduces to Bresenham’s algorithm with one modification: lines pro-
duced in this description are “half-open,” meaning that the final fragment
(corresponding to pp) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may
be difficult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:
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1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either # or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ
from that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either z-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by p, = (24, y4) and let p, = (24, ys) and py = (@5, ys). Set

(Pr — Pa) - (P — Pa)

t =
IPe — pall?

(3.1)

(Note that ¢ = 0 at p, and ¢t = 1 at p.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, t, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

_(L=t)fa/wa + 1]y /wy
f= (1 =ty /wy + tay/wy (3.2)

where f, and f, are the data associated with the starting and ending end-
points of the segment, respectively; w, and w; are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. a, = ap = 1
for all data except texture coordinates, in which case a, = ¢, and a, = ¢
(¢. and ¢, are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are undefined if either of these is less
than or equal to 0). Note that linear interpolation would use

f=0=)fu)as+1tfi/a. (3.3)
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The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to find the corresponding value when
interpolated in eye space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion effects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFFig. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command
void LineStipple( int factor, ushort pattern ) ;

defines a line stipple. patternis an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the effective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1,256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b= |s/r] mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least significant and
15 being the most significant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
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segment in a group of independent segments (as specified when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding
the supplied width to the nearest integer, then clamping it to the
implementation-dependent maximum non-antialiased line width. Though
this implementation-dependent value cannot be queried, it must be no
less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than 1. If
rounding the specified width results in the value 0, then it is as if the value
were 1.

Non-antialiased line segments of width other than one are rasterized
by offsetting them in the minor direction (for an z-major line, the minor
direction is y, and for a y-major line, the minor direction is z) and replicating
fragments in the minor direction (see Figure 3.5). Let w be the width
rounded to the nearest integer (if w = 0, then it is as if w = 1). If the line
segment has endpoints given by (2o, yo) and (21, y1) in window coordinates,
the segment with endpoints (g, y0 — (w — 1)/2) and (21,1 — (w —1)/2) is
rasterized, but instead of a single fragment, a column of fragments of height
w (a row of fragments of length w for a y-major segment) is produced at
each z (y for y-major) location. The lowest fragment of this column is the
fragment that would be produced by rasterizing the segment of width 1
with the modified coordinates. The whole column is not produced if the
stipple bit for the column’s z location is zero; otherwise, the whole column
is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges
are parallel to the specified line segment; each is at a distance of one-half
the current width from that segment: one above the segment and one below
it. The other two edges pass through the line endpoints and are perpen-
dicular to the direction of the specified line segment. Coverage values are
computed for each fragment by computing the area of the intersection of
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width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments
are shown. The heavy line segment is the one specified to be rasterized; the
light segment 1s the offset segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.
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Figure 3.6. The region used in rasterizing and finding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

the rectangle with the fragment square (see Figure 3.6; see also section 3.2).

Equation 3.2 is used to compute associated data values just as with non-
antialiased lines; equation 3.1 is used to find the value of ¢ for each fragment
whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased
segments must be provided. As with the point width, a GL implementa-
tion may be queried for the range and number of gradations of available
antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where “fragment” is replaced
with “rectangle.” FEach rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).
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3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or off. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1.0. The initial value of the line stipple is OzFFFF (a
stipple of all ones). The initial value of the line stipple repeat count is one.
The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.6 of section 2.12.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace( enum mode ) ;

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
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either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the  and y window coordinates of the polygon’s vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either
side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. Define barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and ¢, each in the range [0, 1],
with @ + b+ ¢ = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle’s boundary as

P = apa + bpy + cpe,

where p,, py, and p. are the vertices of the triangle. a, b, and ¢ can be found
as
_ Alpppe) ) Alppape) | Alppaps)

A(paprpe)’ A(paprpe)’ A(paprpe)’

where A(Imn) denotes the area in window coordinates of the triangle with
vertices [, m, and n.

Denote a datum at p,, py, or p. as f,, fp, or f., respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given
by
afo/Wa +bfp/wp + cfe/we
ac, [wy + bag/wy + cafw,

f= (3.4)

where w,, w; and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and ¢ are the barycentric coordinates of the fragment for which the data
are produced. a, = a; = a, = 1 except for texture s, ¢, and r coordinates,
for which a, = ¢4, ap = @, and a. = ¢. (if any of q,, ¢, or ¢. are less
than or equal to zero, results are undefined). a, b, and ¢ must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment’s center.
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Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa/aa + bfb/ab + Cfc/ac;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion effects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon’s vertices can be used
to obtain the value assigned to each fragment produced by the rasterization
algorithm. That is, it must be the case that at every fragment

f=>"aif;
=1

where n is the number of vertices in the polygon, f; is the value of the f at
vertex ¢; for each ¢ 0 < ¢; <1 and }°/_; a; = 1. The values of the a; may
differ from fragment to fragment, but at vertex ¢, a; = 0,5 # ¢ and a; = 1.

One algorithm that achieves the required behavior is to triangulate a
polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satisfies the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple( ubyte patternf] ) ;

pattern is a pointer to memory into which a 32 x 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.3 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR_INDEX. The unpacked values (before any conversion or arithmetic
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would have been performed) are bitwise ANDed with 1 to obtain a stipple
pattern of zeros and ones.

If 2, and y,, are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (z,, mod 32, y,, mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment’s square. A coverage
value is computed at each such fragment, and this value is saved to be applied
as described in section 3.10. An associated datum is assigned to a fragment
by integrating the datum’s value over the region of the intersection of the
fragment square with the polygon’s interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment’s center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule defined in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonMode( enum face, enum mode ) ;

face is one of FRONT, BACK, or FRONT _AND_BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
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beginning of the first rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
affect only the final rasterization of polygons: in particular, a polygon’s
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-

tively, apply.

3.5.5 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), and the current values of the Polygon-
Mode setting for each of front and back facing polygons. The initial stipple
pattern is all ones; initially stippling is disabled. The initial setting of poly-
gon antialiasing is disabled. The initial state for PolygonMode is FILL for
both front and back facing polygons.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command. Some of the parameters and
operations governing the operation of DrawPixels are shared by Read-
Pixels (used to obtain pixel values from the framebuffer) and CopyPixels
(used to copy pixels from one framebuffer location to another); the discus-
sion of ReadPixels and CopyPixels, however, is deferred until Chapter 4
after the framebuffer has been discussed in detail. Nevertheless, we note
in this section when parameters and state pertaining to DrawPixels also
pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebuffer (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.
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Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

UNPACK_SWAP BYTES | boolean FALSE TRUE /FALSE
UNPACK LSB_FIRST | boolean FALSE TRUE /FALSE
UNPACK ROW_LENGTH | integer 0 [0,00)
UNPACK_SKIP_ROWS | integer 0 [0,00)

UNPACK_SKIP_PIXELS | integer 0 [0,00)
UNPACK ALIGNMENT | integer 4 1,2,4.8

Table 3.1: PixelStore parameters pertaining to DrawPixels.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of
these commands is issued. This may differ from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStore{if}( enum pname, T param ) ;

prname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a floating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0.0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a floating-
point value, then the passed value is converted to floating-point.

3.6.2 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels, ReadPixels, and
CopyPixels at the time when one of these commands is executed (which
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‘ Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—00,00)
INDEX OFFSET integer 0 (—00,00)

RED_SCALE float 1.0 (—00,00)
GREEN_SCALE float 1.0 (—00,00)
BLUE_SCALE float 1.0 (—00,00)
ALPHA_SCALE float 1.0 (—00,00)
DEPTH_SCALE float 1.0 (—00,00)

RED_BIAS float 0.0 (—00,00)

GREEN_BIAS float 0.0 (—00,00)

BLUE_BIAS float 0.0 (—00,00)
ALPHA BIAS float 0.0 (—00,00)
DEPTH_BIAS float 0.0 (—00,00)

Table 3.2: PixelTransfer parameters.

may differ from the time the command is issued). Some pixel transfer modes
are set with

void PixelTransfer{if}( enum param, T value ) ;

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.

The other pixel transfer modes are the various lookup tables used by
DrawPixels, ReadPixels, and CopyPixels. These are set with

void PixelMap{ui us f}v( enum map, sizei size, T val-

uesf] ) ;

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and values is a pointer to an array of size map values.
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Map Name H Address ‘ Value ‘ Init. Size ‘ Init. Value ‘
PIXEL_MAP_I_TO_I color idx color idx 1 0
PIXEL_MAP S_TOS || stencil idx | stencil idx 1 0
PIXEL MAP_I_TOR || color idx R 1 0.0
PIXEL MAP_I_TOG || color idx G 1 0.0
PIXEL MAP_I_TOB || color idx B 1 0.0
PIXEL MAP_I_TOA || color idx A 1 0.0
PIXEL_MAP R_TOR R R 1 0.0
PIXEL_MAP_G_TOG G G 1 0.0
PIXEL _MAP B_TOB B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is specified. An entry giving a
color component value is converted according to Table 2.4. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The var-
ious tables and their initial sizes and entries are summarized in Table 3.3.
A table that takes an index as an address must have stze = 2" or the error
INVALID_VALUE results. The maximum allowable size of each table is imple-
mentation dependent, but must be at least 32 (a single maximum applies
to all tables). The error INVALID_VALUE is generated if a size larger than the
implemented maximum, or less than zero, is given to PixelMap.

3.6.3 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
Figure 3.7. We describe the stages of this process in the order in which they
occur.

Pixels are drawn using

void DrawPixels( sizei width, sizei height, enum format,
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Figure 3.7. Operation of DrawPixels. The parameters controlling the stages
above the dotted line are set with PixelStore while those controlling the
stages below the line are set with PixelTransfer or PixelMap.
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type ‘ Corresponding Type ‘
UNSIGNED BYTE unsigned 8-bit integer
BYTE signed 8-bit integer
BITMAP single bits in unsigned 8-bit integers
UNSIGNED_SHORT unsigned 16-bit integer
SHORT signed 16-bit integer
UNSIGNED_INT unsigned 32-bit integer
INT 32-bit integer
FLOAT single-precision floating-point

Table 3.4: DrawPixels and ReadPixels types.

enum f{ype, void *data ) ;

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These data
are signed or unsigned bytes, 16-bit integers, or 32-bit integers, or single-
precision floating-point values, depending on the value of type. The possible
values of type and the types they indicate are given in Table 3.4. If the GL
is in color index mode and format is not one of COLOR_INDEX, STENCIL_INDEX,
or DEPTH_COMPONENT, then the error INVALID_OPERATION occurs.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes,
16-bit integers, 32-bit integers, or single-precision floating-point elements.
These elements are grouped into sets of one, two, three, or four values,
depending on the format, to form a group. Table 3.5 summarizes the format
of groups obtained from memory. It also indicates those formats that yield
indices and those that yield components.

The byte-ordering of the bytes that constitute each element in memory
is whatever is native to the GL client if UNPACK_SWAP_BYTES is FALSE. If it is
TRUE, then byte-ordering is reversed for each element. In this case, there
is no effect on a one-byte element, but the constituent bytes of a two-byte
or four-byte element are reversed when those bytes are read to form the
element. If the four bytes making up a four-byte element are stored in order
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Name H Type Flements ‘ Target Buffer ‘
COLOR_INDEX Index Color Index Color
STENCIL_INDEX Index Stencil value Stencil
DEPTH_COMPONENT || Component Depth value Depth
RED Component R Color
GREEN Component G Color
BLUE Component B Color
ALPHA Component A Color
RGB Components R, G, B Color
RGBA Components R, G, B, A Color
LUMINANCE Component Luminance value Color
LUMINANCE ALPHA || Components | Luminance value, A Color

Table 3.5: DrawPixels and ReadPixels formats. The third column gives
a description of and the number and order of elements in a group.

in memory as by, b, b3, and b4, then the reverse order is by, b3, b2, and by.

Calling DrawPixels with a type of BITMAP is a special case in which
the data are a series of unsigned bytes. In this case, the only allowable
formats are COLOR_INDEX and STENCIL_INDEX. (Other formats generate the
error INVALID ENUM.) Each byte is taken as a series of eight bits, each of which
is a single element. The single-bit elements within each byte are ordered from
most significant to least significant if the value of UNPACK LSB_FIRST is FALSE;
otherwise, the ordering is from least significant to most significant.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the first element of the first group
of the first row pointed to by the pointer passed to DrawPixels. If the
value of UNPACK_ROW LENGTH is not positive, then the number of groups in a
row is width; otherwise the number of groups is UNPACK ROW LENGTH. If the
first element of a row is at location p in memory, then the location of the
first element of the next row is obtained by skipping

nl s>
k:{ a/s[snlj/a] s<a (3.5)

elements, where n is the number of elements in a group, [ is the number of
groups in the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in
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SKIP PIXELS

SKIP_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated param-
eter names are prefixed by UNPACK_ for DrawPixels and by PACK_ for
ReadPixels.

bytes, of an element. In the case of 1-bit elements, the location of the next
row is obtained by skipping

— [g—ﬂ (3.6)

elements. The allowable values of UNPACK_ALIGNMENT are 1, 2, 4, or 8; other
values result in the error INVALID VALUE.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK SKIP_PIXELS. Before
obtaining the first group from memory, the pointer supplied to DrawPixels
is effectively advanced by (UNPACK_SKIP_PIXELS)n + (UNPACK _SKIP_ROUWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by k
elements. height sets of width groups of values are obtained this way. See
Figure 3.8.

Conversion to floating-point

This step applies only to groups of components. It is not performed on
indices. FEach element in a group is converted to a floating-point value
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according to the appropriate formula in Table 2.4 (section 2.12) for color
components.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the first original element into each of the first three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Arithmetic on Components

This step applies only to component groups. FEach component is multi-
plied by an appropriate signed scale factor: RED_SCALE for an R compo-
nent, GREEN_SCALE for a G component, BLUE SCALE for a B component, and
ALPHA SCALE for an A component, or DEPTH_SCALE for a depth component.
Then the result is added to the the appropriate signed bias: RED BIAS,
GREEN_BIAS, BLUE_BIAS, ALPHA BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to indices. If the index is a floating-point value, it is
converted to fixed-point, with an unspecified number of bits to the right of
the binary point. Indices that are already integers remain so; any fraction
bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX OFFSET is added to the index.
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RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP_COLOR is FALSE. First, each component is clamped to the range [0, 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R TOR for R, PIXEL MAP G TO G for GG, PIXEL MAP B_TO B
for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an
address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

Index Lookup

This step applies only to indices. If the GL is in RGBA mode, then the
integer part of the index is used to reference 4 tables of color components:
PIXEL MAP_I_TO_R, PIXEL MAP_T_TO_G, PIXEL MAP_I_TO._B, and PIXEL_MAP_T_TO_A.
Fach of these tables must have 2" entries for some integer value of n (n may
be different for each table). For each table, the index is first rounded to the
nearest integer; the result is ANDed with 2" — 1, and the resulting value
used as an address into the table. The indexed value becomes an R, G, B,
or A value, as appropriate. The group of four elements so obtained replaces
the index, changing the group’s type to “component.”

If the GL is in color index mode and if MAP_COLOR is TRUE, then the index is
looked up in the PIXEL MAP_I_TO.I table (otherwise, the index is not looked
up). Again, the table must have 2" entries for some integer n, and the
integer part of the index is ANDed with 2" — 1, producing a value. This
value addresses the table, and the value in the table replaces the index.
The floating-point table value is first rounded to a fixed-point value with
unspecified precision.

Finally, if format is STENCIL_INDEX and if MAP_STENCIL is TRUE, then the
index is looked up as described in the preceding paragraph, but using the
PIXEL_MAP_S_TO_S table.

Final Conversion

For a color index, final conversion consists of masking the bits of the index
to the left of the binary point by 2™ — 1, where n is the number of bits in an
index buffer. For RGBA components, each element is clamped to [0, 1]. The
resulting values are converted to fixed-point according to the rules given in
section 2.12.9 (Final Color Processing).
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For a depth component, an element is first clamped to [0, 1] and then
converted to fixed-point as if it were a window z value (see section 2.9.1,
Controlling the Viewport).

Stencil indices are masked by 2" — 1, where n is the number of bits in
the stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom( float z,, float z, ) ;

Let (2p,yrp) be the current raster position (section 2.11). (If the current
raster position is invalid, then DrawPixels is ignored.) If a particular
group (index or components) is the nth in a row and belongs to the mth
row, consider the region in window coordinates bounded by the rectangle
with corners

(Zyp + 2N, Yrp + 2yM) and (Zyp + 2o(n 4+ 1), yrp + 2y(m + 1))

(either z, or z, may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position’s associated data. A frag-
ment arising from a depth component takes the component’s depth value;
the color and texture coordinates are given by those associated with the
current raster position. Groups arising from DrawPixels with a format of
STENCIL INDEX are treated specially and are described in section 4.3.1.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of

fragments to be produced. Each of these fragments has the same associated

data. These data are those associated with the current raster position.
Bitmaps are sent using

void Bitmap( sizei w, sizei h, float xp,, float ¥,
float @y, float ys , ubyte dataf] ) ;
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Figure 3.9. A bitmap and its associated parameters. z;; and y;; are not
shown.

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (Zpo, ¥bo) gives the floating-point & and y values of the bitmap’s
origin. (s, ys;) gives the floating-point  and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to
the procedure given in section 3.6.3 for DrawPixels: it is as if the width and
height passed to that command were equal to w and h, respectively, the type
were BITMAP, and the format were COLOR_INDEX. The unpacked values (before
any conversion or arithmetic would have been performed) are bitwise ANDed
with 1 to obtain a stipple pattern of zeros and ones. See Figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.
Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(211, 91) = ([Zrp = Tbols [Yrp — Ybo))
and upper right corner at (z; + w,yy + h) where w and h are the width
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and height of the bitmap, respectively. Fragments in the array are produced
if the corresponding bit in the bitmap is 1 and not produced otherwise.
The associated data for each fragment are those associated with the current
raster position. Once the fragments have been produced, the current raster
position is updated:

(prv yTp) — (pr + Zbiy Yrp + Ybi )-

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a specified image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragment’s (s,t) coordinates to modify
the fragment’s RGBA color (r is currently ignored). Texturing is specified
only for RGBA mode; its use in color index mode is undefined.

The GL provides a means to specify the details of how texturing of a
primitive is effected. These details include specification of the image to be
texture mapped, the means by which the image is filtered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

The command

void TexImage2D( enum target, int level, int compo-
nents, sizei width, sizei height, int border, enum format,
enum f{ype, void *data ) ;

is used to specify a texture image. Currently, target must be TEXTURE_2D.
The arguments width, height, format, type, and data correspond precisely to
the corresponding arguments to DrawPixels (refer to section 3.6.3); they
specify the image’s width and height, a format of the image data, the type of
those data, and a pointer to the image data in memory. The image is taken
from memory exactly as if these arguments were passed to DrawPixels,
but the process stops just before final conversion. Fach R, G, B, and A
value so extracted is clamped to [0,1]. (The formats STENCIL_INDEX and
DEPTH_COMPONENT are not allowed.) Components are selected from the R,
G, B, and A values to obtain a texture with components components (the
significance of the number of components is described below). Table 3.6
summarizes the mapping of R, G, B, and A values to texture components.

Version 1.0 - 1 July 1994



80 CHAPTER 3. RASTERIZATION

‘ Components H RGBA Values ‘ Texture Components ‘

1 R T
2 R, A I, A
3 R, G, B C

4 R,G.B,A |C,A

Table 3.6: Correspondence of texture components to extracted R, G, B, and
A values. See section 3.8.3 for a description of the texture components L,

A, and C.

Specifying a number of components other than 1, 2, 3, or 4 generates the
error INVALID VALUE.

The image itself (pointed to by data) is a sequence of groups of values.
The first group is the lower left corner of the texture image. Subsequent
groups fill out rows of width width from left to right; height rows are stacked
from bottom to top.

The level argument to TexImage2D is an integer level-of-detail number.
Levels of detail are discussed below, under Mipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero or
greater than the base 2 logarithm of the maximum texture width or height
(see below) is specified, the error INVALID_VALUE is generated.

The border argument to TexImage2D is a border width. The signifi-
cance of borders is described below. The border width affects the required
dimensions of the texture image: it must be the case that width = 2™ 4+ 2b
and height = 2™ + 2b. where b is the (non-negative) border width. If width
and height do not satisfy these relationships, then the error INVALID VALUE is
generated. Currently, if b is not either 0 or 1, then the error INVALID VALUE
is generated. The maximum allowable width or height of an image is imple-
mentation dependent, but must be at least 64 (or 64 + 2b with a border of
width b). An excessive width or height, or a width or height less than zero,
generates the INVALID VALUE error.

Another command,

void TexImagelD( enum target, int level, int compo-
nents, sizei width, int border, enum format, enum type,
void *data ) ;

is used to specify one-dimensional texture images. Currently, target must be
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the texture target TEXTURE_1D. For the purposes of decoding the texture im-
age, TexImagelD is equivalent to calling TexImage2D with correspond-
ing arguments and a height argument of 1, except that the height of the
image is always 1, regardless of the value of border. It must be the case that
width = 2™ + 2b for some integer n where b is the value of border, or the
error INVALID VALUE is generated.

An image with zero height or width (or zero width, for TexImagelD)
indicates the null texture. If the null texture is specified for level-of-detail
zero, it is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL’s internal memory. This copying effectively places the
decoded image inside a border of the maximum allowable width (currently
1) whether or not a border has been specified (see Figure 3.10). If no
border or a border smaller than the maximum allowable width has been
specified, then the image is still stored as if it were surrounded by a border
of the maximum possible width. Any excess border (which surrounds the
specified image, including any border) is assigned unspecified values. A
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A two-dimensional texture array has width 2" + 2b and height
2™ 4+ 2b, where b is the maximum allowable border width; a one-dimensional
texture array has width 2" + 2b and height 1.

An element (4, j) of the texture array is called a texel (for a 1-dimensional
texture, j is irrelevant). The texture value used in texturing a fragment is
determined by that fragment’s associated (s,?) coordinates, but may not
correspond to any actual texel. See Figure 3.10.

Various parameters control how the texture array is treated when applied
to a fragment. Fach parameter is set by calling

void TexParameter{if}( enum farget, enum pname,
T param ) ;

void TexParameter{if}v( enum farget, enum pname,
T params ) ;

target is the target, either TEXTURE_1D or TEXTURE 2D, pname is a symbolic
constant indicating the parameter to be set; the possible constants and cor-
responding parameters are summarized in Table 3.7. In the first form of the
command, param is a value to which to set a single-valued parameter; in the
second form of the command, params is an array of parameters whose type
depends on the parameter being set. If the values for TEXTURE BORDER COLOR
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1.0
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-1.0 u 9.0

0.0 S 1.0

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. « and 3, values used in blending
adjacent texels to obtain a texture value, are also shown.
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Name ‘ Type ‘ Legal Values
TEXTURE_WRAP S integer | CLAMP, REPEAT
TEXTURE_WRAP_T integer | CLAMP, REPEAT
TEXTURE MIN FILTER | integer | NEAREST, LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR
TEXTURE MAG FILTER | integer | NEAREST, LINEAR
TEXTURE_BORDER_COLOR | 4 floats | any 4 values in [0, 1]

Table 3.7: Texture parameters and their values.

are specified as integers, the conversion for signed integers from Table 2.4 is
applied to convert the values to floating-point. Each of the four values set
by TEXTURE_BORDER COLOR is clamped to lie in [0, 1].

Texture Wrap Modes

If TEXTURE WRAP_S or TEXTUREWRAP.T is set to REPEAT, then the GL ignores
the integer part of s or ¢ coordinates, respectively, using only the fractional
part. (For a number r, the fractional part is » — |r], regardless of the sign
of r; recall that the floor function truncates towards —oc.) CLAMP causes s
or t coordinates to be clamped to the range [0,1]. The initial state is for
both s and ¢ behavior to be that given by REPEAT.

3.8.1 Texture Minification

Applying a texture to a primitive implies a mapping from texture image
space to framebuffer image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebuffer space, then a filtering, followed fi-
nally by a resampling of the filtered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple filtering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebuffer space is deemed to
magnify or minify the texture image. The choice is governed by a scale fac-
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tor p(z,y) and Ax,y) = logy[p(z, y)]; if A(x,y) is less than or equal to some
constant (the selection of the constant is described below in section 3.8.2)
the texture is said to be magnified; if it is greater, the texture is minified. A
is called the level of detail.

Let s(z,y) be the function that associates an s texture coordinate with
each set of window coordinates (z,y) that lie within a primitive; define
t(z,y) analogously. Let u(z,y) = 2"s(z,y) and v(z,y) = 2™t(z,y) (for a
one-dimensional texture, define v(x,y) = 0). For a polygon, p is given at a
fragment with window coordinates (z,y) by

5+ () G+ ()] e

where du/dx indicates the derivative of u with respect to window z, and
similarly for the other derivatives. For a line, the formula is

Ju Ju 2 ov ov 2
p= ¢<8—$Ax + 8—yAy) + (8—96A$ + 8—yAy) /l, (3.8)

where Az = 23 — 21 and Ay = y2 — y1 with (21,y1) and (22, y2) being the
segment’s window coordinate endpoints and [ = /Az? + Ay?. For a point,
pixel rectangle, or bitmap, p = 1.

While it is generally agreed that equations 3.7 and 3.8 give the best
results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal p with a function f(z,y)
subject to these conditions:

1. f(x,y) is continuous and monotonically increasing in each of |0u/dz|,
|0u/0yl, |0v/0x], and |0v/0y],
2. Let

@
Oz

v
dy

@
Oz

du
dy

b b

} and mvzmax{

.

When A indicates minification, the value assigned to TEXTURE MIN FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTURE MIN FILTER is NEAREST, the texel nearest (in Manhattan distance) to

My = max{

Then max{m,,m,} < f(z,y) < my + m,.
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that specified by (s,?) is obtained. This means the texel at location (i, )
becomes the texture value, with ¢ given by

R s <1,

’_{zn—L s=1. (3.9)
(Recall that if TEXTURE WRAP.S is REPEAT, then 0 < s < 1.) Similarly, j is
found as

N t <1,

J‘{ 91, t=1. (3.10)

For a one-dimensional texture, j is irrelevant; the texel at location ¢ becomes
the texture value.

When TEXTURE MIN FILTER is LINEAR, a 2 X 2 square of texels is selected.
This square is obtained by first computing

; { |u —1/2| mod 2", TEXTUREWRAP_S is REPEAT,
0 pu

lu—1/2], TEXTURE WRAP_S is CLAMP
and
. ) |v—1/2] mod 2™, TEXTURE_WRAP.T is REPEAT
Jo lv—1/2], TEXTURE_WRAP_T is CLAMP.
Then
) (ip+1)mod 2", TEXTURE WRAP_S is REPEAT,
] do+ 1, TEXTURE WRAP_S is CLAMP
and
. ) (jo+1)mod 2™, TEXTUREWRAP_T is REPEAT,
= Go+1, TEXTURE WRAP_T is CLAMP.
Let

a = frac(u — 1/2) and f = frac(v—1/2)

where frac(z) denotes the fractional part of . Let 7;; be the texel at location
(7,7) in the texture image. Then the texture value, 7 is found as

T = (1 - a)(l - ﬁ)Tiojo + a(l - ﬁ)Tiﬂo + (1 - a)ﬁTioﬁ + aﬁTZ&]& (3'11)
for a two-dimensional texture. For a one-dimensional texture,
T=(1—-a)n, +am,

where 7; indicates the texel at location ¢ in the one-dimensional texture. If
any of the selected 7;; (or 7;) in the above equations refer to a border texel
with unspecified value, then the border color given by the current setting of
TEXTURE BORDER _COLOR is used instead of the unspecified value or values.
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Mipmapping

TEXTURE_MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a
mipmap. A mipmap is an ordered set of arrays representing the same image;
each array has a resolution lower than the previous one. If the texture has
dimensions 2" x 2™, then there are max{n,m} + 1 mipmap arrays. The
first array is the original texture with dimensions 2™ x 2™. Fach subsequent
array has dimensions 2(F=1) x 201 where 2% x 2! are the dimensions of the
previous array. This is the case as long as both & > 0 and [ > 0. Once either
k= 0or =0, each subsequent array has dimension 1 x 20=1) or 2(A=1) x 1,
respectively, until the last array is reached with dimension 1 x 1.

Each array in a mipmap is transmitted to the GIL using TexImage2D
or TexImagelD; the array being set is indicated with the level-of-detail
argument. Level-of-detail numbers proceed from 0 for the original texture
array through p = max{n,m} with each unit increase indicating an array of
half the dimensions of the previous one as already described. If texturing is
enabled (and TEXTURE MIN FILTER is one that requires a mipmap) at the time
a primitive is rasterized and if the set of arrays 0 through p is incomplete,
based on the dimensions of array 0, then it is as if texture mapping were
disabled. The set of arrays 0 through p is incomplete if the numbers of
components in each mipmap array are not the same, or if the border widths
of the mipmap arrays are not the same, or if the dimensions of the mipmap
arrays do not follow the sequence described above. Arrays indexed greater
than p are insignificant.

The mipmap is used in conjunction with the level of detail to approx-
imate the application of an appropriately filtered texture to a fragment.
Let p = max{n,m} and let ¢ be the value of A at which the transition
from minification to magnification occurs (since this discussion pertains to
minification, we are concerned only with values of A where A > ¢). For
NEAREST MIPMAP NEAREST, if ¢ < A < 0.5 then the mipmap array with level-
of-detail of 0 is selected. Otherwise, the dth mipmap array is selected when
d—%< /\gd—l—%aslong as 1 < d < p. If/\>p—|—%,thenthepthmipmap
array is selected. The rules for NEAREST are then applied to the selected
array.

The same mipmap array selection rules apply for LINEAR MIPMAP NEAREST
as for NEAREST MIPMAP NEAREST, but the rules for LINEAR are applied to the
selected array.

For NEAREST MIPMAP LINEAR, the level d — 1 and the level d mipmap arrays
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are selected, where d—1 < A < d, unless A > p, in which case the pth mipmap
array is used for both arrays. The rules for NEAREST are then applied to each
of these arrays, yielding two corresponding texture values 7;_y and 74. The
final texture value is then found as

7 = (1 — fracllogy(p)])Ta—1 + fracllogy(p)]74.

LINEAR MIPMAP LINEAR has the same effect as NEAREST MIPMAP LINEAR except
that the rules for LINEAR are applied for each of the two mipmap arrays to
generate 74_1 and 4.

3.8.2 Texture Magnification

When A indicates magnification, the value assigned to TEXTUREMAG FILTER
determines how the texture value is obtained. There are two possible val-
ues for TEXTURE MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equation 3.9 and 3.10 are used); LINEAR be-
haves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.11 is used). The
level-of-detail 0 texture array is always used for magnification.

Finally, there is the choice of ¢, the minification vs. magnification switch-
over point. If the magnification filter is given by LINEAR and the minification
filter is given by NEAREST MIPMAP NEAREST or LINEAR MIPMAP NEAREST, then ¢ =
0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise ¢ = 0.

The state necessary for texture can be divided into two categories.
First, there are the two sets of mipmap arrays (one-dimensional and two-
dimensional) and their number. Each array has associated with it a width
and height (two-dimensional only), a border width, and a four-valued in-
teger describing the number of components in the image. FEach initial
texture array is null (zero width and height, zero border width, 1 com-
ponent). Next, there are the two sets of texture properties; each consists
of the selected minification and magnification filters, the wrap modes for
s and t, and the TEXTURE_BORDER_COLOR. In the initial state, the value as-
signed to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the value for
TEXTURE MAG FILTER is LINEAR. Both s and ¢ wrap modes are set to REPEAT.
TEXTURE_BORDER_COLOR is (0,0,0,0).

3.8.3 Texture Environments and Texture Functions

The command
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void TexEnv{if}( enum target, enum pname, T param ) ;
void TexEnv{if}v( enum target, enum pname, T params ) ;

sets parameters of the texture environment that specifies how texture values
are interpreted when texturing a fragment. target must currently be the sym-
bolic constant TEXTURE ENV. pname is a symbolic constant indicating the pa-
rameter to be set. In the first form of the command, param is a value to which
to set a single-valued parameter; in the second form, params is a pointer to
an array of parameters: either a single symbolic constant or a value or group
of values to which the parameter should be set. The possible environment
parameters are TEXTURE_ENV_MODE and TEXTURE_ENV_COLOR. TEXTURE_ENV_MODE
may be set to one of MODULATE, DECAL, or BLEND; TEXTURE_ENV_COLOR is set to
an RGBA color by providing four single-precision floating-point values in
the range [0, 1] (values outside this range are clamped to it). If integers are
provided for TEXTURE ENV_COLOR, then they are converted to floating-point as
specified in Table 2.4 for signed integers.

The value of TEXTURE ENV_MODE specifies a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the number of components of the
texture arrays that were last specified. In the following table, C' is a triple
of color values comprising each of R, G, and B, while A (A) is treated
separately. R, G, B, and A values, after being obtained from a supplied
texture image, are in the range [0, 1]. The subscript f indicates a value or
values pertaining to the incoming fragment, ¢ indicates a texture value, and
v indicates the color computed by the texture function. For a one component
image, L; indicates that single component. For a two component image, L;
is the first component, and A; is the second. A three component image
has only a color value C%, while a four component one has a color value C}
and and alpha value A;. The functions for the various combinations are
summarized in Table 3.8.

The state required for the current texture environment consists of the
three-valued integer indicating the texture function and four floating-point
TEXTURE ENV_COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE_ENV_COLOR is (0,0,0,0).

3.8.4 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constant TEXTURE_1D or TEXTURE 2D to
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Texture Functions

cpts MODULATE DECAL BLEND
1 Cy = LCy undefined Cy=(1-L)Cs+ LC,
A, = As A, = As
2 Cy = LCy undefined Cy=(1-L)Cs+ LC,
A, = AAy A, = A Ay
3 Cy=Cilly C, =00, undefined
A, = As A, = As
4 Cy=0CCy | Cy = (1= A)Cy + Ay undefined
A, = AAy A, = As

Table 3.8: Texture functions. Multiplication of a color triple by a scalar
means multiplying each of R, G, and B by the scalar; multiplying two color
triples means multiplying each component of the second by the correspond-
ing component of the first. (. represents the red, green, and blue values
assigned to TEXTURE_ENV_COLOR. C'y and (', represent the red, green, and blue
components of the fragment color prior to and after texture application. Ay
and A, represent the alpha component of the fragment prior to and after
texture application.
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enable the one-dimensional or two-dimensional texture, respectively. If both
one- and two-dimensional textures are enabled, the two-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.1 and 3.8.2. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment’s R, G, B, and A values. These
are the color values passed to subsequent operations. Other data associated
with the incoming fragment remain unchanged, except that the texture co-
ordinates may be discarded.

The required state is two bits indicating whether each of one- or two-
dimensional texturing is enabled or disabled. In the initial state, all textur-
ing is disabled.

3.9 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing
color using a blending factor f. Fogis enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

[ =exp(—d-=2), (3.12)
f=exp(—(d-2)%),or (3.13)
f= Z - 'z (3.14)

(z is the eye-coordinate distance from the eye, (0,0,0,1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
specified with

void Fog{if}( enum pname, T param ) ;
void Fog{if}v( enum pname, T params) ;

If pname is FOG_MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.12, 3.13, or 3.14, respectively, is selected for the fog calculation (if,
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when 3.14 is selected, e = s, results are undefined). If pname is FOG DENSITY,
FOG_START, or FOG_END, then param is or params points to a value that is
d, s, or e, respectively. If d, s, or e is specified less than zero, the error
INVALID_VALUE results.

An implementation may choose to approximate the eye-coordinate dis-
tance from the eye to each fragment center by |z.|. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f, the
result is clamped to [0, 1] to obtain the final f.

[ is used differently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if C'. represents a rasterized fragment’s R, G,
or B value, then the corresponding value produced by fog is

C = fCo+(1- f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R,
G, B, and A values of ('; are specified by calling Fog with pname equal to
FOG_COLOR; in this case params points to four values comprising C'y. If these
are not floating-point values, then they are converted to floating-point using
the conversion given in Table 2.4 for signed integers. Each component of C'y
is clamped to [0, 1] when specified. If iy is a color index, then a single value
specifies iy. Its integer part is masked with 2" — 1, where n is the number
of bits in a color index framebuffer.

In color index mode, the formula for fog blending is
I =14+ (1- f)ig

where ¢, is the rasterized fragment’s color index and 7, is a single-precision
floating-point value. (1 — f)is is rounded to the nearest fixed-point value
with the same number of bits to the right of the binary point as 7,. In this
case, iy is set by calling Fog with pname set to FOG_INDEX and param being
or params pointing to the single floating-point value that is ;.

The state required for fog consists of a three valued integer to select the
fog equation, three floating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, F0G MODE is EXP, d = 1.0, ¢ = 1.0, and
5=0.0; C'y =(0,0,0,0) and ¢5 = 0.
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3.10 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment’s alpha
(A) value to yield a final alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.
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Per-Fragment Operations
and the Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebuffer is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GI. implementation or
context.

Corresponding bits from each pixel in the framebuffer are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical buffers. These are the color,
depth, stencil, and accumulation buffers. The color buffer actually consists
of a number of buffers: the front left buffer, the front right buffer, the back
left buffer, the back right buffer, and some number of auziliary buffers. Typ-
ically the contents of the front buffers are displayed on a color monitor while
the contents of the back buffers are invisible. (Monoscopic contexts display
only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.) The contents of the auxiliary buffers are never
visible. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide right buffers, back
buffers, or auxiliary buffers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G,
B, and, optionally, A unsigned integer values. The number of bitplanes
in each of the color buffers, the depth buffer, the stencil buffer, and the

93
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Fragment Pixel . Alpha
— L Scissor
+ Ownership Test > Test
Associated Test (RGBA Only)
Data

Depth buffer - Stencil ————
Test Test

Framebuffer J Framebuffer J

I Blending . Dithering . Logicop - To
(RGBA Only) (colorindex only) Framebuffer

4 4

Figure 4.1. Per-fragment operations.

Framebuffer Framebuffer

accumulation buffer is fixed and window dependent. If an accumulation
buffer is provided, it must have at least as many bitplanes per R, G, and B
color component as do the color buffers.

The initial state of all provided bitplanes is undefined.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (2, ¥ )
modifies the pixel in the framebuffer at that location based on a number of
parameters and conditions. We describe these modifications and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (2, ¥, ) in the frame-
buffer is currently owned by the GL (more precisely, by this GL context). If
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it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test
allows the window system to control the GL’s behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (2., y,,) lies within the scissor rectangle defined
by four values. These values are set with

void Scissor( int left, int bottom, sizei width,
sizei height ) ;

If left < z,, < left + width and bottom < y,, < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR_TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment’s alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc( enum func, clampf ref ) ;

funcis a symbolic constant indicating the alpha test function; refis a refer-
ence value. refis clamped to lie in [0, 1], and then converted to a fixed-point
value according to the rules given for an A component in section 2.12.9. For
purposes of the alpha test, the fragment’s alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
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pass the fragment never, always, if the fragment’s alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil buffer at location (2., y.,) and
a reference value. The test is controlled with

void StencilFunc( enum func, int ref, uint mask ) ;
void StencilOp( enum sfail, enum dpfail, enum dppass ) ;

The test is enabled or disabled with the Enable and Disable commands, us-
ing the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

refis an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0,2% — 1], where s is the number of bits
in the stencil buffer. funcis a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil buffer. The s least significant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERQ, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth buffer
test (below) fails (dpfail), or if it passes (dppass).
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If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.
In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil buffer, no
stencil modification can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth buffer test

The depth buffer test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth buffer
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modified as indicated below as if the depth buffer
test passed. If enabled, the comparison takes place and the depth buffer and
stencil value may subsequently be modified.
The comparison is specified with

void DepthFunc( enum func) ;

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer test
passes never, always, if the incoming fragment’s z,, value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment’s
(2w, Yu) coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The
stencil value at the fragment’s (2, y,,) coordinates is updated according to
the function currently in effect for depth buffer test failure. Otherwise, the
fragment continues to the next operation and the value of the depth buffer
at the fragment’s (z,,, ¥, ) location is set to the fragment’s z,, value. In this
case the stencil value is updated according to the function currently in effect
for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.
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4.1.6 Blending

Blending combines the incoming fragment’s R, G, B, and A values with the
R, G, B, and A values stored in the framebuffer at the incoming fragment’s
(2w, Yu) location. This blending is dependent on the incoming fragment’s
alpha value and that of the corresponding currently stored pixel. Blending
applies only in RGBA mode; in color index mode it is bypassed. Blending
is enabled or disabled using Enable or Disable with the symbolic constant
BLEND. If it is disabled, proceed to the next stage.
The command that controls blending is

void BlendFunc( enum src, enum dst ) ;

sre indicates how to compute a source blending factor, while dst indicates
how to compute a destination factor. The possible arguments and their
corresponding computed source and destination factors are summarized in
Tables 4.1 and 4.2. In these tables, A is a single alpha value, and C' is a
quadruplet of R, G, B, and A values. A subscript of s indicates a value
from an incoming fragment; one of d indicates the corresponding current
framebuffer value. Division of a quadruplet by a scalar means dividing each
element by that value. Addition or subtraction of quadruplets or triplets
means adding or subtracting them component-wise.

The computations in Tables 4.1 and 4.2 are effectively carried out in
floating-point and yield floating-point blending factors. Destination (frame-
buffer) components referred to in the tables are taken to be fixed-point val-
ues represented according to the scheme given in section 2.12.9 (Final Color
Processing), as are source (fragment) components. Any implied conversion
to floating-point must leave 0 and 1 invariant.

The computed source and destination blending quadruplets are applied
to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination
blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed as

Cy5 + CyD,

where multiplication of quadruplets means multiplying them component-
wise. Then each value in this quadruplet is clamped to 2™ — 1, where n is
the number of bits allocated to that color component in the framebuffer,
and the four values are sent to the next operation.

The state required is two integers indicating the source and destina-
tion blending functions and a bit indicating whether blending is enabled
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‘ Value ‘ Blend Factors
ZERO (0,0,0,0)
ONE (1,1,1,1)
DST_COLOR Ry, Gy, By, Ay
ONE_MINUS DST_COLOR | (1,1,1,1)— (R4, G4, Ba, Ag)
SRC_ALPHA (Ag, As, As, As)
ONE_MINUS_SRC_ALPHA | (1,1,1,1)— (A,, As, As, As)
DST_ALPHA (Ag, Ag, Ag, Ag)
ONE_MINUS DST_ALPHA | (1,1,1,1)— (A4, Ag, A4, Ag)
SRC_ALPHA SATURATE | (f, f, f,1)

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(As, 1 — Ay).

‘ Value ‘ Blend factors

ZERO (0,0,0,0)

ONE (1,1,1,1)

SRC_COLOR Ry, G, Bs, A
ONE_MINUS_SRC_COLOR | (1,1,1,1)— (R, Gy, By, As)
SRC_ALPHA (Ag, As, Ag, As)
ONE_MINUS_SRC_ALPHA | (1,1,1,1)— (A,, As, As, As)
DST_ALPHA (Ag, Ag, Ag, Ag)

ONE_MINUS DST_ALPHA | (1,1,1,1)— (A4, Ag, A4, Ag)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.
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or disabled. The initial state of the blending functions is ONE for the source
function and ZERO for the destination function; initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing
(section 4.2.1) using each buffer’s color for Cy. If a color buffer has no A
value, then it is as if the destination A value is 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a fixed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebuffer; call each such value ¢. For each c,
dithering selects a value ¢q such that ¢4 € {max{0, [¢] — 1}, [¢]} (after this
selection, treat ¢; as a fixed point value in [0,1] with m bits). This selec-
tion may depend on the x,, and y,, coordinates of the pixel. In color index
mode, the same rule applies with ¢ being a single color index. ¢ must not be
larger than the maximum value representable in the framebuffer for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment’s
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a fixed-point value with as many bits as there are in the
corresponding component in the framebuffer; a color index is rounded to the
nearest integer representable in the color index portion of the framebuffer.

Dithering is enabled with Enable and disabled with Disable using the
symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled. In RGBA mode, this is the last operation, and the
result goes into the framebuffer. In color index mode, continue on to the
last operation.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment and
the value stored at the corresponding location in the framebuffer; the result
replaces the current framebuffer value. The logical operation is enabled or
disabled with Enable or Disable using the symbolic constant LOGIC OP.
The logical operation is selected by

void LogicOp( enum op ) ;
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Argument value | Operation
CLEAR 0

AND sAd
AND_REVERSE s A —d
COPY S
AND_INVERTED -sAd
NOOP d

XOR s xor d

OR svd

NOR (s Vd)
EQUIV = (s xor d)
INVERT —d
OR_REVERSE sV —d
COPY_INVERTED -
OR_INVERTED -sVd
NAND (s Ad)
SET 1

Table 4.3: Arguments to LogicOp and their corresponding operations.

op is a symbolic constant. The possible constants and the corresponding
logical operations are enumerated in Table 4.3; in this table, s is the value
of the incoming fragment and d is the value stored in the framebuffer.

Note that the SET operation sets all bits of the result to 1. The result
replaces the value in the framebuffer at the fragment’s (z,y) coordinates.
The numeric values assigned to the symbolic constants are the same as the
those assigned to the corresponding symbolic values in the X window system.

LogicOp applies only in color index mode; in RGBA mode it does not
occur and the previous operation is the last one applied to incoming frag-
ments. LogicOp occurs once for each color buffer selected for writing. The
required state is an integer indicating the logical operation, and a bit to
indicate whether the logical operation is enabled or disabled. The initial
state is for the logic operation to be given by COPY, and it is disabled.
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4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebuffer. This section describes operations
that control or affect the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are
written. This is accomplished with

void DrawBuffer( enum buf) ;

bufis a symbolic constant specifying zero, one, two, or four buffers for writ-
ing. The constants are NONE, FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT _AND BACK, and AUXO through AUXn, where n+41
is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffers front_left,
Sfront_right, back_left, and back_right, and to the auziliary buffers. Argu-
ments other than AUX: that omit reference to LEFT or RIGHT refer to both left
and right buffers. Arguments other than AUX: that omit reference to FRONT
or BACK refer to both front and back buffers. AUX: enables drawing only to
auxiliary buffer 7. Each AUX: adheres to AUX{ = AUXO + 7. The constants and
the buffers they indicate are summarized in Table 4.4. If DrawBuffer is
is supplied with a constant (other than NONE) that does not indicate any of
the color buffers allocated to the GL context, the error INVALID OPERATION
results.

Indicating a buffer or buffers using DrawBuffer causes subsequent pixel
color value writes to affect the indicated buffers. If more than one color
buffer is selected for drawing, blending and logical operations are computed
and applied independently for each buffer. Calling DrawBuffer with a
value of NONWE inhibits the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts
include both left and right buffers. Likewise, single buffered contexts include
only front buffers, while double buffered contextsinclude both front and back
buffers. The type of context is selected at GL initialization.

The state required to handle buffer selection is a set of up to 4 + n bits.
4 bits indicate if the front left buffer, the front right buffer, the back left
buffer, or the back right buffer, are enabled for color writing. The other n
bits indicate which of the auxiliary buffers is enabled for color writing. In
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symbolic front | front | back | back | aux
constant left | right | left | right | <
NONE

FRONT _LEFT .

FRONT RIGHT .

BACK_LEFT .

BACK RIGHT .

FRONT . .

BACK . .

LEFT . .

RIGHT . .
FRONT_AND BACK [ . . °

AUXz .

Table 4.4: Arguments to DrawBuffer and the buffers that they indicate.

the initial state, the front buffer or buffers are enabled if there are no back
buffers; otherwise, only the back buffer or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical
framebuffers after all per-fragment operations have been performed. The
commands

void IndexMask( uint mask ) ;
void ColorMask( boolean r, boolean ¢, boolean b,
boolean a ) ;

control the color buffer or buffers (depending on which buffers are currently
indicated for writing). The least significant n bits of mask, where n is the
number of bits in a color index buffer, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index buffer (or buffers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color buffer or buffers. r, ¢, b, and « indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
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bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.
The depth buffer can be enabled or disabled for writing z,, values using

void DepthMask( boolean mask ) ;

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is
disabled. In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask( uint mask ) ;

controls the writing of particular bits into the stencil planes. The least
significant s bits of mask comprise an integer mask (s is the number of bits
in the stencil buffer), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular
buffer to the same value. The argument to

void Clear( bitfield buf) ;

is the bitwise OR of a number of values indicating which buffers
are to be cleared. The values are COLOR_BUFFERBIT, DEPTH BUFFER_BIT,
STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accu-
mulation buffer (see below), respectively. The value to which each buffer is
cleared depends on the setting of the clear value for that buffer. If the mask
is not a bitwise OR of the specified values, then the error INVALID VALUE is
generated.

void ClearColor( clampf r, clampf g, clampf b, clampf a) ;
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sets the clear value for the color buffers in RGBA mode. Fach of the specified
components is clamped to [0, 1] and converted to fixed-point according to
the rules of section 2.12.9.

void ClearIndex( float index ) ;

sets the clear color index. index is converted to a fixed-point value with
unspecified precision to the left of the binary point; the integer part of this
value is then masked with 2™ — 1, where m is the number of bits in a color
index value stored in the framebuffer.

void ClearDepth( clampd d ) ;

takes a floating-point value that is clamped to the range [0, 1] and con-
verted to fixed-point according to the rules for a window z value given in
section 2.9.1. Similarly,

void ClearStencil( int s) ;

takes a single integer argument that is the value to which to clear the stencil
buffer. sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum( float r, float ¢, float b, float a ) ;

takes four floating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation buffer (see the next
section). These values are clamped to the range [—1, 1] when they are spec-
ified.

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also effective. If
a buffer is not present, then a Clear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, the stencil buffer, and the accumulation buffer. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil buffer and accumulation buffer clear values are all 0. The depth
buffer clear value is initially 1.0.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one
for each of R, G, B, and A. The accumulation buffer is controlled exclusively
through the use of
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void Accum( enum op, float value ) ;

(except for clearing it). op is a symbolic constant indicating an accumula-
tion buffer operation, and value is a floating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

The accumulation buffer operations apply identically to every pixel, so
we describe the effect of each operation on an individual pixel. Accumulation
buffer values are taken to be signed values in the range [—1,1]. Using ACCUM
obtains R, G, B, and A components from the buffer currently selected for
reading (section 4.3.2). Each component, considered as a fixed-point value
in [0,1] (see section 2.12.9), is converted to floating-point. Each result is then
multiplied by value. The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and
the resulting color value replaces the current accumulation buffer color value.
The LOAD operation has the same effect as ACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
buffer, multiplies each of the R, G, B, and A components by wvalue. The
resulting color value is placed in the buffers currently enabled for color writ-
ing as if it were a fragment produced from rasterization, except that the only
per-fragment operations applied are the pixel ownership test and, if enabled,
dithering (section 4.1); color masking (section 4.2.2) is also applied.

The MULT operation multiplies each R, G, B, and A in the accumulation
buffer by value and then returns the scaled color components to their corre-
sponding accumulation buffer locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only
if the operation is RETURN. In this case, a value sent to the enabled color
buffers is first clamped to [0,1]. Otherwise, results are undefined if the
result of an operation on a color component is too large (in magnitude) to
be represented by the number of available bits. When the scissor test is
enabled (section 4.1.2), then only those pixels within the current scissor box
are updated by any Accum operation; otherwise, all pixels in the window
are updated. If there is no accumulation buffer, or if the GL is in color index
mode, Accum generates the error INVALID OPERATION.

No state (beyond the accumulation buffer itself) is required for accumu-
lation buffering.
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4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation of DrawPixels was described in section 3.6.3, except if the
format argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (z,y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Fach coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Fach
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebuffer, subject
to the current setting of StencilMask.
The error INVALID OPERATION results if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Pixels are read using

void ReadPixels( int z, int y, sizei width, sizei height,
enum format, enum type, void *data ) ;

The arguments after z and y to ReadPixels correspond to those of Draw-

Pixels. The pixel storage modes that apply to ReadPixels are summarized
in Table 4.5.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth
buffer. If there is no depth buffer, the error INVALID OPERATION occurs. If
the format is STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the error INVALID OPERATION occurs. For
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k mask
to -
Index » shift p-| index—>index | o [0.020-1]
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Figure 4.2. Operation of ReadPixels. The parameters controlling the stages
above the dotted line are set with PixelTransfer or PixelMap while those
controlling the stages below the line are set with PixelStore.

Parameter Name ‘ Type ‘ Initial Value ‘ Valid Range ‘

PACK_SWAP BYTES | boolean FALSE TRUE/FALSE
PACK_LSB_FIRST | boolean FALSE TRUE/FALSE
PACK_ROW_LENGTH | integer 0 [0, 00)
PACK_SKIPROWS | integer 0 [0,00)

PACK_SKIP PIXELS | integer 0 [0, 00)
PACK_ALIGNMENT | integer 4 1,248

Table 4.5: PixelStore parameters pertaining to ReadPixels.
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all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled with Read Buffer.
The command

void ReadBuffer( enum src) ;

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, FRONT, BACK, LEFT, RIGHT, and AUXO
through AUXn. FRONT and LEFT refer to the front left buffer, BACK refers
to the back left buffer, and RIGHT refers to the front right buffer. The other
constants correspond directly to the buffers that they name. If the requested
buffer is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBuffer is FRONT if there is no back buffer and BACK
otherwise.

ReadPixels obtains values from the selected buffer from each pixel with
lower left hand corner at (z 4+ ¢,y + j) for 0 < ¢ < width and 0 < j <
height; this pixel is said to be the ith pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are undefined. Results are also undefined
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected buffer, regardless of how those
values were placed there.

The number of values obtained from the selected buffer depends on the
format. If the format is LUMINANCE, R, G, and B values are obtained, while
if it is LUMINANCE ALPHA, then R, G, B, and A values are obtained. If the
framebuffer does not support alpha values then the A that is obtained is
1.0. If the format is one of RED, GREEN, BLUE, ALPHA, RGB, RGBA, LUMINANCE, or
LUMINANCE ALPHA, and the GL is in color index mode, then the color index
is obtained. Otherwise, Table 3.5 gives the type and number of values that
are obtained from the selected buffer for each pixel.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL_INDEX nor DEPTH_COMPONENT. The error INVALID_OPERATION
results (in RGBA mode) if format is COLOR_INDEX.

The R, G, and B (and possibly A) values form a group of elements. Each
element is taken to be a fixed-point value in [0,1] with m bits, where m is the
number of bits in the corresponding color component of the selected buffer
(see section 2.12.9).
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Conversion of Depth values

This step applies only if format is DEPTH_COMPONENT. An element is taken to
be a fixed-point value in [0,1] with m bits, where m is the number of bits in
the depth buffer (see section 2.9.1).

Arithmetic on components

This step applies only to component groups. An R element is multiplied by
RED SCALE, a G element by GREEN SCALE, a B element by BLUE_SCALE, and an
A element by ALPHA_SCALE; a depth component is multiplied by DEPTH_SCALE.
Next, RED_BIAS, GREEN_BIAS, BLUE_BIAS, ALPHA BIAS, or DEPTH BIAS is added
to each resulting element, as appropriate.

Arithmetic on Indices

This step applies only to indices. After the index is obtained from the
selected buffer, the corresponding step for DrawPixels is applied to the
integer index (there are no bits to the right of the binary point in this case).

RGBA to RGBA Lookup

This step applies only to RGBA component groups. It is identical to the
corresponding step for DrawPixels.

Index Lookup

This step applies only to indices. If format is one of RED, GREEN, BLUE,
ALPHA, RGB, RGBA, LUMINANCE, or LUMINANCE ALPHA, then the index is used to
reference 4 tables of color components: PIXEL MAP I _TOR, PIXEL MAP_I_TO.G,
PIXEL MAP_I_TOB, and PIXEL MAP I_TOA. Each of these tables must have 27
entries for some integer value of n (n may be different for each table). For
each table, the index is first rounded to the nearest integer; this value is
ANDed with 2" — 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate.
The group of four elements so obtained replaces the index, changing the
group’s type to “component.”

If the format is COLOR_INDEX and if MAP_COLOR is TRUE, then the index is
looked up in the PIXEL MAP_I_TO.I table (otherwise, the index is not looked
up). Again, the table must have 2" entries for some n, and the integer part
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of the index is ANDed with 2” — 1, producing a value. This value addresses
the table, and the value in the table replaces the index. The floating-point
table value is first rounded to a fixed-point value with unspecified precision.

Finally, if format is STENCIL_INDEX and if MAP_STENCIL is TRUE, then the
index is looked up as described in the preceding paragraph, but using the
PIXEL_MAP_S_TO_S table.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L=R+G+B

where R, (G, and B are the values of the R, G, and B components. The
single computed L. component replaces the R, G, and B components in the

group.

Final Conversion

For an index, if the type is not FLOAT, final conversion consists of masking
the index with the value given Table 4.6; if the type is FLOAT, then the inte-
ger index is converted to single-precision floating-point. For a component,
each component is first clamped to [0, 1]. Then, the appropriate conversion
formula from Table 4.6 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory
for DrawPixels. That is, the ith group of the jth row (corresponding to
the ith pixel in the jth row) is placed in memory just where the ¢th group of
the jth row would be taken from for DrawPixels. See Unpacking under
section 3.6.3. The only difference is that the storage mode parameters whose
names begin with PACK_ are used instead of those whose names begin with
UNPACK_. If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE, only the
corresponding single element is written. Otherwise the number of elements
to be written is given by Table 3.5.

In correspondence with DrawPixels, if PACK_SWAP BYTES is TRUE, there
is no effect on a one-byte element, but bytes constituting a two-byte or
four-byte element are reversed (so that they are in an order opposite to the
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‘ type ‘ Index Mask ‘ Component Conversion ‘
UNSIGNED BYTE 28 1 (25— 1)e
BYTE 27 -1 [(2% — 1)e —1]/2
BITMAP 1 1
UNSIGNED SHORT 216 1 (216 — 1)c
SHORT 215 1 [(216 — 1)c —1]/2
UNSIGNED INT 232 1 (2°% — 1)c
INT 231 1 [(2%2 = 1)c - 1]/2
FLOAT none c

Table 4.6: ReadPixels index masks and component conversion formulas. ¢
represents a component value to be converted.

client’s native byte ordering for the indicated type) immediately prior to be-
ing placed in client memory. If PACK_SWAP_BYTES is FALSE, then no swapping
occurs. If type is BITMAP, then each byte of client memory is eight bits, each
of which is a single element. The single-bit elements within each byte are or-
dered from most significant to least significant if the value of PACK_LSB FIRST
is FALSE; otherwise, the ordering is from least significant to most significant.
The BITMAP type is valid only if format is either COLOR_INDEX or STENCIL_INDEX
(otherwise, results are undefined).

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebuffer to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels( int z, int y, sizei width, sizei height,
enum f{ype ) ;

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The first four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate),
subjected to arithmetic operations, and looked up in tables just as if Read-
Pixels were called with the corresponding arguments. If the type is STENCIL
or DEPTH, then it is as if the format for ReadPixels were STENCIL_INDEX

Version 1.0 - 1 July 1994



4.3. DRAWING, READING, AND COPYING PIXELS 113

k mask
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- shift | index—>index | o ™
Index Ll Ll [0.0,2"-1]
(stencil, offset lookup
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ma ——
RGBA__p mp | scale | REBA->RGEA to
z 0] bias lookup [0.1]

Figure 4.3. Operation of CopyPixels. All parameters affecting pixel copying
are set with PixelTransfer or PixelMap.

or DEPTH_COMPONENT, respectively. If the type is COLOR, then if the GL is in
RGBA mode, it is as if the format were RGBA, while if the GL is in color
index mode, it is as if the format were COLOR_INDEX.

The groups of elements so obtained are then written to the framebuffer
just as if DrawPixels had been given width and height, beginning with
final conversion of elements. The effective format is the same as that already

described.

4.3.4 Pixel draw/read state

The state required for pixel operations consists of the parameters that are
set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of Read Buffer,
a twelve-valued integer, is also required, along with the current raster posi-
tion (section 2.11). State set with PixelStore is GL client state.
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Special Functions

This chapter describes additional GI functionality that does not fit easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), flushing and finishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not affected by the use
of evaluators.

Consider the RF-valued polynomial p(u) defined by

p(u) = BI(u)R; (5.1)
1=0
with R; € R and

1

B (u) = (n) w'(l—u)",

the ith Bernstein polynomial of degree n (recall that 0° =1 and () = 1).
Each R; is a control point. The relevant command is

114
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‘ target ‘ k ‘ Values
MAP1_VERTEX_3 3 | z, y, z vertex coordinates
MAP1 VERTEX 4 4 | z,y, z, w vertex coordinates
MAP1_INDEX 1 | color index
MAP1_COLOR 4 41 R,G,B, A
MAP1 _NORMAL 3 | 2, y, z normal coordinates
MAP1 TEXTURE COORD 1 | 1 | s texture coordinate
MAP1 _TEXTURE COORD 2 | 2 | s, t texture coordinates
MAP1 TEXTURE COORD 3 | 3 | s, t, r texture coordinates
MAP1 _TEXTURE COORD 4 | 4 | s, t, r, ¢ texture coordinates

Table 5.1: Values specified by the target to Mapl. Values are given in the
order in which they are taken.

void Mapl{fd}( enum type, T uy, T uz, int stride, int order,
T points ) ;

type is a symbolic constant indicating the range of the defined polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n+41; The error INVALID VALUE results if order
is less than one or greater than MAX _EVAL_ORDER. points is a pointer to a set of
n 4 1 blocks of storage. Fach block begins with £k single-precision floating-
point or double-precision floating-point values, respectively. The rest of the
block may be filled with arbitrary data. Table 5.1 indicates how k& depends
on type and what the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

1y and ug give two floating-point values that define the endpoints of the
pre-image of the map. When a value u' is presented for evaluation, the
formula used is

. ' — uy
Pi(u) =Pl — )

The error INVALID _VALUE results if «y = us.

Map?2 is analogous to Mapl, except that it describes bivariate polyno-
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mials of the form

p(uv) = 35" BI(w) Bl ()R,

1=0 7=0
The form of the Map2 command is

void Map2{fd}( enum target, T uy, T uz, int ustride,
int worder, T vy, T vy, int vstride, int vorder, T points) ;

target is a range type selected from the same group as is used for Mapl,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n + 1)(m + 1) blocks of storage (uorder = n + 1 and vorder = m + 1;
the error INVALID VALUE results if either worderorvorder is less than one or
greater than MAX_EVAL ORDER). The values comprising R;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past
the first value pointed to by points. uq, us, v1, and vy define the pre-image
rectangle of the map; a domain point (u',v’) is evaluated as

/ /
’ U —u v —m

p/(u 7?]/) = p(

Uz—u1702—v1 '

The evaluation of a defined map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if uy is equal to wus, or if vy is equal to vs.

Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}( T arg) ;
void EvalCoord{12}{fd}v( T arg) ;

EvalCoord1 causes evaluation of the enabled 1-dimensional maps. The ar-
gument is the value (or a pointer to the value) that is the domain coordinate,
u'. EvalCoord2 causes evaluation of the enabled 2-dimensional maps. The
two values specify the two domain coordinates, u’ and v’, in that order.
When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
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Figure 5.1. Map Evaluation.

it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important difference. The difference is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current val-
ues are used). The order of the effective commands is immaterial, except
that Vertex (for vertex coordinate evaluation) must be issued last. Use of
evaluators has no effect on the current color, normal, or texture coordinates.

No command is effectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1_TEXTURE_COORD_1 and MAP1_TEXTURE_COORD_2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2_VERTEX_3 or MAP2 VERTEX 4 is enabled, then the nor-
mal to the surface is computed analytically. If automatic normal generation
is enabled, then this computed normal is used as the normal associated with
a generated vertex. Automatic normal generation is controlled with Enable
and Disable with symbolic the constant AUTO_NORMAL. If automatic normal
generation is disabled, then a corresponding normal map, if enabled, is used
to produce a normal. If neither automatic normal generation nor a normal
map are enabled, then no normal is sent with a vertex resulting from an
evaluation (the effect is that the current normal is used).

For MAP VERTEX 3, let q = p. For MAP_VERTEX 4, let q = (z/w,y/w, z/w),
where (z,y,z,w)=p. Then let

a0
M= 90 " o

Then the generated normal, n, is given by n = m/||m||.
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The second way to carry out evaluations is to use a set of commands
that provide for efficient specification of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The first step is to define
a grid in the domain. This is done using

void MapGrid1{fd}( int n, Tu}, Tu} ) ;
for a 1-dimensional map or

void MapGrid2{fd}( int n,, T u}, T u}, int n,, T v},
Tvh ) ;

for a 2-dimensional map. In the case of MapGridl u| and u} describe an
interval, while n describes the number of partitions of the interval. The
error INVALID_VALUE results if n < 0. For MapGrid2, (u}, v}) specifies one
two-dimensional point and (u, v}) specifies another. n, gives the number of
partitions between u} and u), and n, gives the number of partitions between
vy and vj. If either n, < 0 or n, < 0, then the error INVALID VALUE occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMeshl( enum mode, int p;, int p; ) ;

mode is either POINT or LINE. The effect is the same as performing the fol-
lowing code fragment, with Au' = (u} — u})/n:

Begin (type) ;
for ¢ = p; to py step 1.0
EvalCoord1 (i * Au' + u});
EndQ);

where EvalCoord1f or EvalCoord1ld is substituted for EvalCoord1 as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE_STRIP. The one requirement is that if either ¢ = 0 or ¢ = n, then the
value computed from i+ Au’ 4 u} is precisely u} or u), respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2( enum mode, int p;, int p;, int ¢,
int ¢ ) ;

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with Au' = (u} — w})/n and Av' = (v} —

o)) /m:
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for i = ¢; to gz — 1 step 1.0
Begin (QUAD_STRIP) ;
for j = p; to py step 1.0
EvalCoord2(j * Au' + u) , ¢ * Av' + v]);
EvalCoord2(j * Au' + u) , (:4+1) * Av' + v]);
EndQ);

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = ¢ to g3 step 1.0
Begin (LINE_STRIP) ;
for j = p; to py step 1.0
EvalCoord2(j * Au' + u) , i * Av' + v]);
End();;
for i = p; to py step 1.0
Begin (LINE_STRIP) ;
for j = q1 to g2 step 1.0
EvalCoord2(i * Au' + uf , j * Av' + v]);
EndQ);

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin (POINTS);
for i = ¢ to ¢y step 1.0
for j = p; to py step 1.0
EvalCoord2(j * Au' + u) , ¢ x Av' + v]);
EndQ);

Again, in all three cases, there is the requirement that 0 Au' 4+ u} = u,
nx Au' + u) = uly, 0% Av' + o] = v, and m * Av' + v] = v).
An evaluation of a single point on the grid may also be carried out:

void EvalPointl( int p ) ;
Calling it is equivalent to the command
EvalCoord1(p * Au' + u});
with Au' and ) defined as above.
void EvalPoint2( int p, int ¢ ) ;

is equivalent to the command
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EvalCoord2(p * Au' + u} , ¢ * Av' + v]);

The state required for evaluators potentially consists of 9 1-dimensional
map specifications and 9 2-dimensional map specifications, as well as cor-
responding flags for each specification indicating which are enabled. FEach
map specification consists of one or two orders, an appropriately sized array
of control points, and a set of two values (for a 1-dimensional map) or four
values (for a 2-dimensional map) to describe the domain. The maximum
possible order, for either u or v, is implementation dependent (one maxi-
mum applies to both w and v), but must be at least 8. Each control point
consists of between one and four floating-point values (depending on the
type of the map). Initially, all maps have order 1 (making them constant
maps). All vertex coordinate maps produce the coordinates (0,0,0,1) (or
the appropriate subset); all normal coordinate maps produce (0,0, 1); RGBA
maps produce (1,1,1,1); color index maps produce 1.0. In the initial state,
all maps are disabled. A flag indicates whether or not automatic normal
generation is enabled for 2-dimensional maps. In the initial state, auto-
matic normal generation is disabled. Also required are two floating-point
values and an integer number of grid divisions for the 1-dimensional grid
specification and four floating-point values and two integer grid divisions for
the 2-dimensional grid specification. In the initial state, the bounds of the
domain interval for 1-D is 0 and 1.0, respectively; for 2-D, they are (0,0)
and (1.0,1.0), respectively. The number of grid divisions is 1 for 1-D and
1 in both directions for 2-D. If any evaluation command is issued when no
vertex map is enabled, nothing happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is defined by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

void InitNames( void ) ;

void PopName( void ) ;
void PushName( uint name ) ;
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void LoadName( uint name ) ;

InitNames empties (clears) the name stack. PopName pops one name
off the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name off of an empty stack generates
STACK _UNDERFLOW; pushing a name onto a full stack generates STACK_OVERFLOVY.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The
GL is placed in selection mode with

int RenderMode( enum mode ) ;

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT
specifies selection mode, and FEEDBACK specifies feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no effect.

Selection is controlled using

void SelectBuffer( sizei n, uint *buffer ) ;

buffer is a pointer to an array of unsigned integers (called the selection
array) to be potentially filled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before SelectBuffer has been called results in an error of
INVALID OPERATION as does calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.10)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack
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with the bottommost element first. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0, 1]) are each multiplied by 232 —1
and rounded to the nearest unsigned integer to obtain the values that are
placed in the hit record.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as fits in the array is written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBuffer pointer to its last specified value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overflow flag was set, then RenderMode
returns —1 and clears the overflow flag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several flags. One flag indicates
the current RenderMode value. In the initial state, the GL is in the RENDER
mode. Another flag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This flag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
final flag is required to indicate whether the maximum number of copied
names would have been exceeded. This flag is reset upon entering selection
mode. This flag, the address of the selection array, and its maximum size
are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling
RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-
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ments are written to the framebuffer. Instead, information about primitives
that would have been rasterized is fed back to the application using the GL.
Feedback is controlled using

void FeedbackBuffer( sizei n, enum type, float *buffer ) ;

buffer is a pointer to an array of floating-point values into which feedback in-
formation will be placed, and rnis a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBuffer has been made, or if a call to FeedbackBuffer
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to fill the array (if there is any room left at
all). The first block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive’s vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). z, y, and =
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position. The texture
coordinates and colors returned are those resulting from the clipping oper-
ations as described in (section 2.12.8).

The ordering rules for GL. command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL
state and the values to be written to the feedback buffer completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,
RenderMode returns the number of values placed in the feedback array
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Type ‘ coordinates ‘ color ‘ texture ‘ total values ‘
2D T,y - - 2
3D T, Y, 2 - - 3
3D_COLOR x, Y, 2 k - 3+ k
3D_COLOR_TEXTURE | z, ¥, 2 k 4 T+ k
4D _COLOR_TEXTURE | 2, y, 2, w k 4 S+ k

Table 5.2: Correspondence of feedback type to number of values per vertex.
kis 1 in color index mode and 4 in RGBA mode.

and resets the feedback array pointer to be buffer. The return value never
exceeds the maximum number of values passed to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be
written than the specified maximum number of values, then the value is not
written and an overflow flag is set. In this case, RenderMode returns —1
when it is called, after which the overflow flag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback buffer before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of floating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback buffer and the number of values returned for each vertex.

The command
void PassThrough( float token ) ;

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive specification is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no effect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.
An overflow flag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this flag is cleared.
These state variables are GL client state. Feedback also relies on the same
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mode flag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The G may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely specifies it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in effect at that time applies to the command. Only server state
is affected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued.
A display list is begun by calling

void NewList( uint n, enum mode ) ;

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE _AND_EXECUTE. then
commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID_VALUE is generated.

After calling NewList all subsequent GI. commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList( void ) ;

occurs, after which the GL returns to its normal command execution state.
It is only when EndList occurs that the specified display list is actually asso-
ciated with the index indicated with NewList. The error INVALID OPERATION
is generated if EndList is called without a previous matching NewList, or
if NewList is called a second time before calling EndList.

Once defined, a display list is executed by calling

void CallList( uint n) ;
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feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKEN vertex
line-segment:

LINE TOKEN vertex vertex

LINE_RESET_TOKEN vertex vertex

polygon:

POLYGON_TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex
bitmap:
BITMAP _TOKEN vertex

CHAPTER 5. SPECIAL FUNCTIONS

pixel-rectangle:
DRAW PIXEL _TOKEN vertex
COPY PIXEL _TOKEN vertex
passthrough:
PASS_THROUGH_TOKEN f

vertex:
2D:

fr

3D:

fFrr

3D_COLOR:

f f f color

3D_COLOR_TEXTURE:
f f f color tex
4D _COLOR_TEXTURE:

f f f [ color tex
color:

Trrr

/
tex:

Trrr

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-
point integer giving the number of vertices in a polygon. The symbols
ending with _TOKEN are symbolic floating-point constants. The labels under
the “vertex” rule show the different data returned for vertices depending
on the feedback type. LINE_TOKEN and LINE RESET_TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line

segment.
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n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If » = 0, then the error INVALID VALUE is
generated.

The command

void CallLists( sizei n, enum type, void *lists ) ;

provides an eflicient means for executing a number of display lists. n is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of offsets. Fach offset is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, or FLOAT indicating
that the array pointed to by listsis an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or floats, respectively. In this
case each offset is found by simply converting each array element to an
integer (floating point values are truncated). Further, type may be one of
2 _BYTES, 3_BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer offset is constructed
according to the following algorithm:

of fset — 0

fori=1to b
of fset — of fset shifted left 8 bits
of fset «— of fset + byte

advance to next byte in the array

bis 2,3, or 4, as indicated by type. If n = 0, CallLists does nothing.

Each of the n constructed offsets is taken in order and added to a display
list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

void ListBase( uint base ) ;

to specify the offset.

Indicating a display list index that does not correspond to any display
list has no effect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE_AND_EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists’
constituent commands, is placed in the list under construction.) To avoid
the possibility of infinite recursion resulting from display lists calling one
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another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.
Two commands are provided to manage display list indices.

uint GenLists( sizei s) ;

returns an integer n such that the indices n,...,n 4+ s — 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the effect of creating an empty display list for each of
the indices n,...,n+s—1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList( uint list) ;

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists( uint list, sizei range ) ;

where [ist is the index of the first display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are simply ignored. If range = 0, nothing happens.

Certain commands, when made within a display list, are not compiled
into the display list but are executed immediately. These are: IsList,
GenlLists, DeleteLists, FeedbackBuffer, SelectBuffer, RenderMode,
ReadPixels, PixelStore, Flush, Finish, as well as IsEnabled and all of
the Get commands (see Chapter 6).

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
defined. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.
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5.5 Flush and Finish

The command
void Flush( void ) ;

indicates that all commands that have previously been sent to the GL must
complete in finite time.
The command

void Finish( void ) ;

forces all previous GL commands to complete. Finish does not return until
all effects from previously issued commands on GL client and server state
and the framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is specified using

void Hint( enum farget, enum hint ) ;

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT_SMOOTH HINT, indicating the desired
sampling quality of points; LINE_SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON_SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOGHINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
efficient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT_CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.
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Chapter 6

State and State Requests

The values of most GL state variables can be obtained using a set of Get
commands. There are four commands for obtaining simple state variables:

void GetBooleanv( enum value, boolean *data ) ;
void GetIntegerv( enum value, int *data ) ;
void GetFloatv( enum value, float *data ) ;
void GetDoublev( enum value, double *data ) ;

The commands obtain boolean, integer, floating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to
return, data is a pointer to an array of the indicated type in which to place
the returned data. In addition

boolean IsEnabled( enum value ) ;

can be used to determine if value is currently enabled (as with Enable) or
disabled.

If a Get command is issued that returns value types different from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a floating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a floating-point value is rounded to the nearest integer,
unless the value is a an RGBA color component, a DepthRange value, a
depth buffer clear value, or a normal coordinate. In these cases, the Get
command converts the floating-point value to an integer according the INT
entry of Table 4.6; a value not in [—1,1] converts to an undefined value.

130
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If GetFloatv is called, a boolean value is interpreted as either 1.0 or 0.0,
an integer is coerced to floating-point, and a double-precision floating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Other commands exist to obtain state variables that are indexed by a
target. These are

void GetClipPlane( enum plane, double eqn/4]) ;

void GetLight{if}v( enum light, enum value, T data ) ;

void GetMaterial{if}v( enum face, enum value, T data ) ;

void GetTexEnv{if}v( enum env, enum value, T data ) ;

void GetTexGen{if}v( enum coord, enum value, T data ) ;

void GetTexParameter{if}v( enum target, enum value,
T data ) ;

void GetTexLevelParameter{if}v( enum target, int lod,
enum value, T data ) ;

void GetPixelMap{ui us f}v( enum map, T data ) ;

void GetMap{ifd}v( enum map, enum value, T data ) ;

GetClipPlane always returns four double-precision values in egn; these
are the coefficients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was specified).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT_DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was specified).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar to GetLight, placing information about value for the target indi-
cated by their first argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coefficients are returned in the eye coordinates that
were computed when the plane was specified; OBJECT LINEAR coefficients are
returned in object coordinates.

For GetTexParameter and GetTexLevelParameter, target must
currently be either TEXTURE 1D or TEXTURE 2D, indicating the target from
which information is to be obtained. wvalue is a symbolic value indicating
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which texture parameter is to be obtained. The lod argument to Get-
TexLevelParameter determines which level-of-detail’s state is returned.
If the lod argument is less than zero or if it is larger than the maximum
allowable level-of-detail then the error INVALID VALUE occurs.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and
value must be one of ORDER, COEFF, or DOMAIN.

GetTexImage is used to obtain texture images.

void GetTexImage( enum tex, int lod, enum format,
enum fype, void *img ) ;

It is somewhat different from the other get commands; tex is a symbolic
value indicating which texture is to be obtained. TEXTURE_1D indicates a one-
dimensional texture, while TEXTURE 2D indicates a two-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.5,
type is a pixel type from Table 3.4, and #mg is a pointer to a block of
memory. GetTexImage obtains component groups from a texture image
with the indicated level-of-detail (the number of components in a group
is the number of components of the texture; the components are assigned
among R, G, B, and A according to Table 3.6) starting with the first group
in the first row, and continuing by obtaining groups in order from each
row and proceeding from the first row to the last. These groups are then
packed and placed in client memory as described in section 4.3.2 under
ReadPixels. The row length and number of rows is determined by the
size of the texture image (including any borders). Calling GetTexImage
with lod less than zero or larger than the maximum allowable causes the
error INVALID VALUE. Calling GetTexImage with format of COLOR_INDEX,
STENCIL_INDEX, or DEPTH_COMPONENT causes the error INVALID_ENUM.
The command

void GetPolygonStipple( void *pattern ) ;

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR_INDEX.

Finally,

ubyte *GetString( enum name ) ;
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returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the string pointed to by the value returned
by GetString is implementation dependent.

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands — the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
Getlntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed to Mapl. Map2
returns R;; in the [(uorder)i + j]th block of values (see page 116 for i, j,
uorder, and R;; ).

Besides providing a means to obtain the values of state variables, the
GL also provides a means to save and restore groups of state variables. The
PushAttrib and PopAttrib commands are used for this purpose. The
command

void PushAttrib( bitfield mask ) ;

takes a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. Fach constant refers to a group of
state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The command

void PopAttrib( void ) ;

resets the values of those state variables that were saved with the last
PushAttrib. Those not saved remain unchanged. It is an error to pop
an empty stack or push onto a full one. Table 6.1 shows the attribute
groups with their corresponding symbolic constant names.

The depth of the attribute stack is implementation dependent but must
be at least 16. The state required is potentially 16 copies of each state
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Attribute Constant
accum-buffer ACCUM_BUFFER_BIT
color-buffer COLOR_BUFFER_BIT
current CURRENTBIT
depth-buffer DEPTH_BUFFER BIT
enable ENABLE BIT
eval EVAL BIT
fog FOG BIT
hint HINT BIT
lighting LIGHTING BIT
line LINE BIT
list LIST BIT
pixel PIXEL _MODE BIT
point POINT BIT
polygon POLYGON BIT
polygon-stipple | POLYGON STIPPLE BIT
scissor SCISSOR_BIT
stencil-buffer STENCIL_BUFFER_BIT
texture TEXTURE BIT
transform TRANSFORM BIT
viewport VIEWPORT BIT
- ALL_ATTRIBBITS

Table 6.1: Attribute groups

Version 1.0 - 1 July 1994



135

variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, the attribute
stack is empty.

In the tables that follow, a type is indicated for each variable. Table 6.2
explains these types. The type actually identifies all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining
to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a “~” in the attribute column
indicates that the indicated value is not included in any attribute group
(and thus can not be pushed or popped with PushAttrib or PopAttrib).
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‘ Type code ‘ Explanation ‘

B Boolean
C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-point s, ¢, r, ¢
values)
N Normal coordinates (floating-point z, y, z
values)
V Vertex, including associated data
Z Integer
VAs Non-negative integer
Ziy Zis | k-valued integer (kx indicates k is minimum)
R Floating-point number
R* Non-negative floating-point number
RF k-tuple of floating-point numbers
P Position (z, y, z, w floating-point coordinates)
D Direction (z, y, # floating-point coordinates)
M4 4 x 4 floating-point matrix
I Image
A Attribute stack entry, including mask
n X type | n copies of type type (n+ indicates n is
minimum)

Table 6.2: State variable types
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Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee
an exact match between images produced by different GI. implementations.
However, the specification does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justification for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebuffer state vector, and for
any GL command, the resulting GL and framebuffer state must be identical
whenever the command is executed on that initial GL and framebufler state.

One purpose of repeatability is avoidance of visual artifacts when a
double-buffered scene is redrawn. If rendering is not repeatable, swapping
between two buffers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might differ at every pixel. Such a difference, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.
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A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a different GL mode vec-
tor, to eventually produce a result in the framebuffer. Examples of these
algorithms include:

o “Erasing” a primitive from the framebuffer by redrawing it, either in
a different color or using the XOR logical operation.

¢ Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement significantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very difficult to achieve (for example, if the hardware does
floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given
GL command, the resulting GL and framebuffer state must be identical each
time the command is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use
of any other state value is not affected by the change):

Required:

o Framebuffer contents (all bitplanes)

o The color buffers enabled for writing
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Strongly

APPENDIX A. INVARIANCE

The values of matrices other than the top-of-stack matrices
Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)

Clear values (color, index, depth, stencil, accumulation)
Current values (color, index, normal, texture coords, edgeflag)
Current raster color, index and texture coordinates.

Material properties (ambient, diffuse, specular, emission, shini-
ness)

suggested:

Matriz mode

Matriz stack depths

Alpha test parameters (other than enable)
Stencil parameters (other than enable)

Depth test parameters (other than enable)
Blend parameters (other than enable)

Logical operation parameters (other than enable)
Pizel storage and transfer state

Fvaluator state (except as it affects the vertex data generated by
the evaluators)

Corollary 1 Fragment generation is invariant with respect to the state val-
ues marked with e in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments
are also invariant with respect to

Required:

Current values (color, color index, normal, texture coords, edge-
flag)
Current raster color, color index, and texture coordinates

Material properties (ambient, diffuse, specular, emission, shini-
ness)
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Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into different color buffers, either simultane-
ously or separately using the same command sequence, are pizel identical.
(Note that this does not hold between X * pizmaps and color buffers, how-
ever. )

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because floating point values may be represented using different formats
in different renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

*X is a registered trademark of the MIT X Consortium.
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Corollaries

The following observations are derived from the body and the other ap-
pendixes of the specification. Absence of an observation from this list in no
way impugns its veracity.

1. The CURRENT RASTER_TEXTURE_COORDINATES must be maintained cor-
rectly at all times, including periods while texture mapping is not
enabled, and when the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are
always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may
change. Otherwise, only additions can be made to upward compat-
ible revisions.

4. GL query commands are not required to satisfy the semantics of the
Flush or the Finish commands. All that is required is that the

queried state be consistent with complete execution of all previously
executed GL commands.

5. Application specified point size and line width must be returned as
specified when queried. Implementation dependent clamping affects

the values only while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

158
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10.

11.

12.

13.

14.

15.
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. The mask specified as the third argument to StencilFunc affects the

operands of the stencil comparison function, but has no direct effect on
the update of the stencil buffer. The mask specified by StencilMask
has no effect on the stencil comparison function; it limits the effect of
the update of the stencil buffer.

. Polygon shading is completed before the polygon mode is interpreted.

If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

. A display list is just a group of commands and arguments, so errors

generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no effect.

Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material
can be used to modify the color index material properties, even in an

RGBA context.

Their is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILL mode, and the fragments generated by the rasterization
of “narrow” polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
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16.

17.
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to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value
is less than the far value for DepthRange. If these conditions are all
satisfied, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

ColorMaterial has no effect on color index lighting.

(No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are specified). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.
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Index of GL calls

Accum, 106
AlphaFunc, 95

Begin, 12, 15, 16, 18-20, 22, 48,
56, 59, 60, 63, 66, 118,
119, 124

Bitmap, 77, 78

BlendFunc, 98

CallList, 20, 125, 127

CallLists, 20, 127

Clear, 104, 105

ClearAccum, 105

ClearColor, 104

ClearDepth, 105

ClearIndex, 105

ClearStencil, 105

ClipPlane, 32

Color, 20, 21, 37, 49

Color3, 21

Color4, 21

Colorb, 38

Colorf, 38

Colori, 38

ColorMask, 103

ColorMaterial, 43, 45, 46, 159

Colors, 38

Colorub, 38, 49

Colorui, 38, 49

Colorus, 38, 49

CopyPixels, 67-69, 107, 112, 113,
123

161

CullFace, 63, 64

DeletelLists, 128

DepthFune, 97

DepthMask, 104

DepthRange, 24, 130, 133, 160

Disable, 29, 31, 33, 38, 43, 53, 56,
59, 63, 66, 88, 90, 95-98,
100, 116, 117

DrawBuffer, 102, 103

DrawPixels, 65, 67-74,77-79, 107,
110, 111, 113, 123

EdgeFlag, 19, 20

EdgeFlagv, 19

Enable, 29, 31, 33, 38, 43, 53, 56,
59, 63, 66, 88, 90, 9598,
100, 116, 117, 130

End, 12, 15-20, 22, 48, 56, 63, 66,
118, 119, 124

EndList, 125

EvalCoord, 20, 116

EvalCoord1, 116, 118, 119

EvalCoord1d, 118

EvalCoord1f, 118

EvalCoord2, 116, 119, 120

EvalMeshl, 118

EvalMesh2, 118, 119

EvalPoint, 20

EvalPoint1, 119

EvalPoint2, 119
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FeedbackBuffer, 123, 124, 128
Finish, 128, 129, 158

Flush, 128, 129, 158

Fog, 90, 91

FrontFace, 42, 63

Frustum, 26, 27, 160

GenlLists, 128

Get, 25, 128, 130
GetBooleanv, 130, 133
GetClipPlane, 131
GetDoublev, 130, 131, 133
GetError, 11, 12
GetFloatv, 130, 131, 133
Getlntegerv, 130, 133
GetLight, 131

GetMap, 131, 132
GetMaterial, 131
GetPixelMap, 131, 132
GetPolygonStipple, 132
GetString, 132, 133
GetTexEnv, 131
GetTexGen, 131
GetTexImage, 132
GetTexLevelParameter, 131, 132
GetTexParameter, 131

Hint, 129

Index, 20, 21
IndexMask, 103, 104
InitNames, 120, 121
IsEnabled, 128, 130, 133
IsList, 128

Light, 42-44
LightModel, 42, 44
LineStipple, 59
LineWidth, 56
ListBase, 127, 128

INDEX

Loadldentity, 26
LoadMatrix, 25, 26
LoadName, 121
LogicOp, 100, 101

Mapl, 115, 116, 133

Map2, 115, 116, 133
MapGrid1, 118

MapGrid2, 118

Material, 20, 42-44, 47, 159
MatrixMode, 25
MultMatrix, 25, 26

NewList, 125, 127
Normal, 20, 21
Normal3, 9, 21, 29
Normal3d, 9
Normal3dv, 9
Normal3f, 9
Normal3fv, 9

Ortho, 26, 27, 160

PassThrough, 124

PixelMap, 67, 69, 71, 108, 113

PixelStore, 67—69, 71, 108, 113,
128

PixelTransfer, 67, 69, 71, 108, 113

PixelZoom, 77

PointSize, 53

PolygonMode, 62, 66, 121, 123

PolygonStipple, 65

PopAttrib, 133, 135

PopMatrix, 28

PopName, 120, 121

PushAttrib, 133, 135

PushMatrix, 28

PushName, 120, 121

RasterPos, 34, 121, 159
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INDEX

RasterPos2, 35

RasterPos3, 35

RasterPos4, 35

ReadBuffer, 109, 113

ReadPixels, 67-69, 72-74, 107-
109, 112, 128, 132

Rect, 22, 63

RenderMode, 122-124, 128

Rotate, 26, 160

Scale, 26, 27, 160

Scissor, 95

SelectBuffer, 121, 122, 128
ShadeModel, 48
StencilFunc, 96, 97, 159
StencilMask, 104, 107, 159
StencilOp, 96, 97

TexCoord, 20
TexCoordl, 21
TexCoord2, 21
TexCoord3, 21
TexCoord4, 21
TexEnv, 88

TexGen, 30, 31
TexImagelD, 80, 81, 86
TexImage2D, 79-81, 86
TexParameter, 81
Translate, 26, 27, 160

Vertex, 7, 20, 35, 117
Vertex2, 20, 22
Vertex2sv, 8
Vertex3, 20

Vertex3f, 7

Vertex4, 20
Viewport, 25
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